Explique la dérivation du modèle logit dans les modèles de choix, couvrant les termes d'erreur, les ensembles de choix et les conditions de disponibilité.
Couvre la maximisation des revenus dans les modèles de choix, les stratégies de tarification, la concurrence sur le marché, et un exemple de modèle binaire logit.
Explore l'analyse de régression logistique des données sur le crabe en fer à cheval, en se concentrant sur l'interprétation du rapport de cotes et l'ajustement du modèle.
Explorer l'interprétation des modèles de régression logistique, l'estimation des paramètres et la comparaison des modèles à l'aide de tests de rapport de probabilité.