En analyse fonctionnelle et dans les domaines proches des mathématiques, les espaces tonnelés sont des espaces vectoriels topologiques où tout ensemble tonnelé - ou tonneau - de l'espace est un voisinage du vecteur nul. La raison principale de leur importance est qu'ils sont exactement ceux pour lesquels le théorème de Banach-Steinhaus s'applique.
Nicolas Bourbaki a inventé des termes tels que « tonneau » ou espace « tonnelé » (à partir des tonneaux de vin) ainsi que les espaces « bornologiques ».
Compte tenu des propriétés d'un tonneau dans un espace localement convexe, les conditions suivantes sont équivalentes pour un espace localement convexe tonnelé E (dont le dual est noté ) :
(a) E est tonnelé ;
(b) toute partie faiblement bornée de est équicontinue ;
(c) toute semi-norme semi-continue inférieurement dans E est continue
(d) pour tout espace localement convexe F, toute partie simplement bornée de est équicontinue.
(Ces équivalences sont une conséquence du théorème des bipolaires, donc du théorème de Hahn-Banach.)
Un espace localement convexe E est tonnelé si, et seulement si sa topologie initiale coïncide avec la topologie forte .
Les espaces de Fréchet, et en particulier les espaces de Banach, sont tonnelés, mais généralement les espaces vectoriels normés ne sont pas tonnelés.
Les espaces de Montel sont tonnelés, par définition.
les espaces vectoriels topologiques qui sont des espaces de de Baire sont tonnelés.
Un séparé, complet est tonnelé.
Un espace limite inductive d'une famille d'espaces tonnelés est tonnelé. Par conséquent, un espace ultrabornologique est tonnelé, et en particulier un espace bornologique et semi-complet est tonnelé (mais il existe des espaces tonnelés qui ne sont pas bornologiques).
Un espace quotient d'un espace tonnelé est tonnelé (en revanche, un sous-espace fermé d'un espace tonnelé n'est pas nécessairement tonnelé).
Une condition nécessaire et suffisante pour qu'un espace somme directe d'espaces localement convexes soit tonnelé est que chacun des le soit.
Un produit d'espaces tonnelés est tonnelé.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
We introduce locally convex vector spaces. As an example we treat the space of test functions and the space of distributions. In the second part of the course, we discuss differential calculus in Bana
Concepts de base de l'analyse fonctionnelle linéaire: opérateurs bornés, opérateurs compacts, théorie spectrale pour les opérateurs symétriques et compacts, le théorème de Hahn-Banach, les théorèmes d
Le théorème de Banach-Steinhaus fait partie, au même titre que le théorème de Hahn-Banach et le théorème de Banach-Schauder, des résultats fondamentaux de l'analyse fonctionnelle. Publié initialement par Stefan Banach et Hugo Steinhaus en 1927, il a aussi été prouvé indépendamment par Hans Hahn, et a connu depuis de nombreuses généralisations. La formulation originelle de ce théorème est la suivante : Lorsque E est un espace de Banach (donc de Baire), il suffit donc que la famille soit simplement bornée sur une partie comaigre, comme E lui-même.
In functional analysis and related areas of mathematics, a metrizable (resp. pseudometrizable) topological vector space (TVS) is a TVS whose topology is induced by a metric (resp. pseudometric). An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.
In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by or , which are generalizations of , while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces.
Steinhaus graphs on n vertices are certain simple graphs in bijective correspondence with binary {0,1}-sequences of length n-1. A conjecture of Dymacek in 1979 states that the only nontrivial regular Steinhaus graphs are those corresponding to the periodic ...
Greedy (geometric) routing is an important paradigm for routing in communication networks. It uses an embedding of the nodes of a network into points of a space (e.g., R-d) equipped with a distance function (e.g., the Euclidean distance l(2)) and uses as a ...
Quadtree-like pyramids have the advantage of resulting in a multiresolution representation where each pyramid node has four unambiguous parents. Such a centered topology guarantees a clearly defined up-projection of labels. This concept has been successful ...