Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les bases statistiques, y compris l'analyse des données et la théorie des probabilités, en mettant l'accent sur la tendance centrale, la dispersion et les formes de distribution.
Explore les générateurs de nombres aléatoires, y compris les algorithmes Pseudo-RNG, les propriétés, les méthodes d'évaluation et les tests d'indépendance.
Explore les algorithmes de consensus dans les systèmes de contrôle en réseau, couvrant des sujets tels que les modèles Metropolis-Hasting et le calcul distribué de régression des moins-quaires.
Explore l'approche structurée de l'analyse exploratoire des données spatiales, en soulignant l'importance des cadres analytiques et du mantra de recherche visuelle.
Explore les distributions de probabilité pour les variables aléatoires dans les études sur la pollution atmosphérique et le changement climatique, couvrant les statistiques descriptives et inférentielles.
Explore des méthodes robustes et résistantes dans des modèles linéaires, en soulignant l'importance de gérer les observations extrêmes et les implications de la robustesse dans les modèles de régression.
Explore le taux de rendement, l'évaluation, la caractérisation du risque et la performance historique du portefeuille, en mettant l'accent sur les avantages de la diversification et l'analyse de la moyenne-variance.