For a high-dimensional problem, a randomized Gram-Schmidt (RGS) algorithm is beneficial in terms of both computational cost and numerical stability. We apply this dimension reduction technique by random sketching to Krylov subspace methods, e.g., to the ge ...
In this manuscript, we present a collective multigrid algorithm to solve efficiently the large saddle-point systems of equations that typically arise in PDE-constrained optimization under uncertainty, and develop a novel convergence analysis of collective ...
Metal plasticity is an inherently multiscale phenomenon due to the complex long-range field of atomistic dislocations that are the primary mechanism for plastic deformation in metals. Atomistic/Continuum (A/C) coupling methods are computationally efficient ...
We generalize and provide a linear algebra-based perspective on a finite element (FE) ho-mogenization scheme, pioneered by Schneider et al. (2017)[1] and Leuschner and Fritzen (2018)[2]. The efficiency of the scheme is based on a preconditioned, well-scale ...
Sylvester matrix equations are ubiquitous in scientific computing. However, few solution techniques exist for their generalized multiterm version, as they now arise in an increasingly large number of applications. In this work, we consider algebraic parame ...
The accurate, robust and efficient transfer of the deformation gradient tensor between meshes of different resolution is crucial in cardiac electromechanics simulations. This paper presents a novel method that combines rescaled localized Radial Basis Funct ...
A unified numerical framework is presented for the modelling of multiphasic viscoelastic
and elastic flows. The rheologies considered range from incompressible Newtonian or
Oldroyd-B viscoelastic fluids to Neo-Hookean elastic solids. The model is formulate ...
Graph sparsification has been studied extensively over the past two decades, culminating in spectral sparsifiers of optimal size (up to constant factors). Spectral hypergraph sparsification is a natural analogue of this problem, for which optimal bounds on ...
Diffusion models generating images conditionally on text, such as Dall-E 2 [51] and Stable Diffusion[53], have recently made a splash far beyond the computer vision com- munity. Here, we tackle the related problem of generating point clouds, both unconditi ...
The parallel Schwarz method (PSM) is an overlapping domain decomposition (DD) method to solve partial differential equations (PDEs). Similarly to classical nonoverlapping DD methods, the PSM admits a substructured formulation, that is, it can be formulated ...