thumb|right|upright=1.4|Construction de la fonction d'erreur réelle.
En mathématiques, la fonction d'erreur (aussi appelée fonction d'erreur de Gauss) est une fonction entière utilisée en analyse. Cette fonction se note erf et fait partie des fonctions spéciales. Elle est définie par :
La fonction erf intervient régulièrement dans le domaine des probabilités et statistiques, ainsi que dans les problèmes de diffusion (de la chaleur ou de la matière).
La probabilité pour qu'une variable normale centrée réduite X prenne une valeur dans l'intervalle [–z, z] est :
La fonction de répartition de X, ou fonction de répartition de la loi normale, usuellement notée Φ, est liée à la fonction d'erreur erf, par la relation :
ou bien encore :
La fonction d'erreur intervient dans l'expression des solutions de l'équation de la chaleur ou de l'équation de la diffusion, par exemple quand les conditions initiales sont données par la fonction de Heaviside.
Considérons notamment un demi-espace x ≥ 0 occupé par un solide de diffusivité thermique κ et de température initialement uniforme T. Si à l'instant sa frontière est portée puis maintenue à la température T, la température T(x,t) à tout instant et en tout point est donnée par :
L'intégrale ne peut être obtenue à partir d'une formule fermée mais par un développement en série entière (de rayon de convergence infini) intégré termes à termes,
Il existe des tables donnant des valeurs des intégrales, comme fonctions de z, mais aujourd'hui, la plupart des logiciels de calcul numérique (tableurs, Scilab) ou de calcul formel (comme Maple ou MuPAD) intègrent une routine de calcul de erf(x) et de sa bijection réciproque, inverf(x), encore plus utile en calcul de probabilités.
Toutefois, les approximations suivantes peuvent être utiles :
En (avec une erreur inférieure à 6 × 10 pour x < 0,5)
En (avec une erreur inférieure à 2 × 10 pour x > 1,75)
Pour
(encadrement proposé par J. T. Chu, 1955 ; la borne supérieure approche partout la fonction erf à moins de 7 × 10 près).
Pour
(approximation proposée par E.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
L'analyse mathématique regroupe sous le terme de fonctions spéciales un ensemble de fonctions analytiques non élémentaires, qui sont apparues au comme solutions d'équations de la physique mathématique, particulièrement les équations aux dérivées partielles d'ordre deux et quatre. Comme leurs propriétés ont été étudiées extensivement (et continuent de l'être), on dispose à leur sujet d'une multitude d'informations.
vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.
vignette|Fonction gaussienne pour μ = 0, σ = 1 ; courbe centrée en zéro. Une fonction gaussienne est une fonction en exponentielle de l'opposé du carré de l'abscisse (une fonction en exp(-x)). Elle a une forme caractéristique de courbe en cloche. L'exemple le plus connu est la densité de probabilité de la loi normale où μ est l'espérance mathématique et σ est l'écart type. Les fonctions gaussiennes sont analytiques, de limite nulle en l'infini. La largeur à mi-hauteur H vaut la demi-largeur à mi-hauteur vaut donc environ 1,177·σ.
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Rectified-linear-unit (ReLU) neural networks, which play a prominent role in deep learning, generate continuous and piecewise-linear (CPWL) functions. While they provide a powerful parametric representation, the mapping between the parameter and function s ...
Borrowing some quotes from Harper Lee's novel "To Kill A Mockingbird" to help frame our manuscript, we discuss methods to profile local proteomes. We initially focus on chemical biology regimens that function in live organisms and use reactive biotin speci ...
Wiley-V C H Verlag Gmbh2024
The goal of this work is to use anisotropic adaptive finite elements for the numerical simulation of aluminium electrolysis. The anisotropic adaptive criteria are based on a posteriori error estimates derived for simplified problems. First, we consider an ...