Concept

Pin group

In mathematics, the pin group is a certain subgroup of the Clifford algebra associated to a quadratic space. It maps 2-to-1 to the orthogonal group, just as the spin group maps 2-to-1 to the special orthogonal group. In general the map from the Pin group to the orthogonal group is not surjective or a universal covering space, but if the quadratic form is definite (and dimension is greater than 2), it is both. The non-trivial element of the kernel is denoted which should not be confused with the orthogonal transform of reflection through the origin, generally denoted Clifford algebra#Spin and Pin groups Let be a vector space with a non-degenerate quadratic form . The pin group is the subset of the Clifford algebra consisting of elements of the form , where the are vectors such that . The spin group is defined similarly, but with restricted to be even; it is a subgroup of the pin group. In this article, is always a real vector space. When has basis vectors satisfying and the pin group is denoted Pin(p, q). Geometrically, for vectors with , is the reflection of a vector across the hyperplane orthogonal to . More generally, an element of the pin group acts on vectors by transforming to , which is the composition of k reflections. Since every orthogonal transformation can be expressed as a composition of reflections (the Cartan–Dieudonné theorem), it follows that this representation of the pin group is a homomorphism from the pin group onto the orthogonal group. This is often called the twisted adjoint representation. The elements ±1 of the pin group are the elements which map to the identity , and every element of O(p, q) corresponds to exactly two elements of Pin(p, q). The pin group of a definite form maps onto the orthogonal group, and each component is simply connected (in dimension 3 and higher): it double covers the orthogonal group. The pin groups for a positive definite quadratic form Q and for its negative −Q are not isomorphic, but the orthogonal groups are.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.