Concept

Cube adouci

Résumé
Le cube adouci ou cuboctaèdre adouci est un solide d'Archimède. Le cube adouci possède 38 faces dont 6 sont des carrés et les 32 autres sont des triangles équilatéraux. Il possède 60 arêtes et 24 sommets. Il a deux formes distinctes, qui sont leurs images dans un miroir (ou "énantiomorphes") l'un de l'autre. Les coordonnées cartésiennes des sommets du cube adouci sont les permutations paires de avec un nombre pair de signes plus, et les permutations impaires avec un nombre impair de signes plus, où ξ est la constante de Tribonacci, solution réelle de et qui peut s'écrire En prenant les permutations paires avec un nombre impair de signes plus, et les permutations impaires avec un nombre pair de signes plus, on obtient un cube adouci différent, l'image miroir. La longueur des arêtes de ce cube adouci est . Parmi les 6 permutations de 3 coordonnées, les permutations paires sont les 3 permutations circulaires. thumb|Patron (géométrie) Le cube adouci peut être engendré en prenant les six faces d'un cube de côté de longueur a, en les translatant d'une longueur vers l'extérieur de façon qu'elles ne se touchent plus. Puis, on leur donne une rotation autour de leur centre (toutes dans le sens horaire ou toutes dans le sens antihoraire relativement à l'axe orthogonal à leur face et sortant du cube) d'un angle , de sorte que les espaces entre les faces carrées puissent être remplis par des triangles équilatéraux. On peut aussi l'obtenir à partir du petit rhombicuboctaèdre en traçant une diagonale dans 12 des 18 carrés que ce polyèdre possède, (à savoir ceux qui ont un côté en commun avec l'un des 8 triangles du rhombicuboctaèdre), puis en déformant les 24 triangles rectangles ainsi obtenus en triangles équilatéraux. Le cube adouci ne doit pas être confondu avec le cube tronqué. Le dodécaèdre adouci Polyèdre adouci Les polyèdres uniformes Les polyèdres en réalité virtuelle dans l'encyclopédie des polyèdres Cube adouci dans MathCurve. Catégorie:Polyèdre chiral Catégorie:Polyèdre adouci Catégorie:Polyèdre uniforme Catégorie:S
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.