Graphe à seuilvignette| Un graphe à seuil. En théorie des graphes, un graphe à seuil est un graphe qui peut être construit, en partant d'un graphe à un seul sommet, par application répétée d'une des deux opérations suivantes : Ajout d'un sommet isolé au graphe. Ajout d'un sommet dominant au graphe, c'est-à-dire d'un sommet connecté à tous les autres sommets. Par exemple, le graphe de la figure ci-contre est un graphe de seuil : il peut être construit en commençant par un graphe à un seul sommet (sommet 1), puis en ajoutant les sept autres dans l'ordre dans lequel ils sont numérotés, les sommets noirs comme sommets isolés et les sommets rouges comme sommets dominants.
Graphe de permutationEn théorie des graphes, un graphe de permutation est un graphe non orienté dont les sommets représentent les éléments d'une permutation, et dont les arêtes relient les paires de sommets qui sont inversés dans la permutation. On peut aussi définir les graphes de permutations de manière géométrique : ce sont les graphes d'intersections de segments dont les extrémités sont sur deux droites parallèles. On définit les graphes de permutation de la manière suivante.
Universal vertexIn graph theory, a universal vertex is a vertex of an undirected graph that is adjacent to all other vertices of the graph. It may also be called a dominating vertex, as it forms a one-element dominating set in the graph. (It is not to be confused with a universally quantified vertex in the logic of graphs.) A graph that contains a universal vertex may be called a cone. In this context, the universal vertex may also be called the apex of the cone.
Induced pathIn the mathematical area of graph theory, an induced path in an undirected graph G is a path that is an induced subgraph of G. That is, it is a sequence of vertices in G such that each two adjacent vertices in the sequence are connected by an edge in G, and each two nonadjacent vertices in the sequence are not connected by any edge in G. An induced path is sometimes called a snake, and the problem of finding long induced paths in hypercube graphs is known as the snake-in-the-box problem.
Graphe d'intervalles propreUn graphe d'intervalles propre est un graphe d'intervalles possédant une représentation d'intervalles dans laquelle aucun intervalle n'est inclus dans l'autre. Un graphe d'intervalles propre est nécessairement un graphe sans griffe. Soit un graphe possédant une griffe comme sous-graphe induit. On appelle les quatre sommets de la griffe d'intervalles respectives ,, et tels que le sommet soit celui relié aux trois autres et que . Comme la griffe est un graphe induit, , et ne sont pas voisins dans . On a donc .
Graphe de comparabilitéDans la théorie des graphes, un graphe de comparabilité est un graphe non orienté qui relie les paires d'éléments qui sont comparables les uns aux autres dans un ordre partiel donné. On les trouve aussi sous le nom de transitively orientable graphs, partially orderable graphs, et containment graphs. Les graphes de comparabilité sont des graphes parfaits. Les cographes sont des graphes de comparabilité Les graphes qui sont de comparabilité et dont le complémentaire est aussi de comparabilité sont exactement les graphes de permutations.
Forbidden graph characterizationIn graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor. A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph K_5 and the complete bipartite graph K_3,3.
Graphe à distance héréditairevignette| Exemple d'un graphe à distance héréditaire. En théorie des graphes, un graphe à distance héréditaire (aussi appelé graphe complètement séparable) est un graphe dans lequel les distances entre sommets dans tout sous-graphe induit connexe sont les mêmes que celles du graphe tout entier ; autrement dit, tout sous-graphe induit hérite les distances du graphe entier. Les graphes à distance héréditaire ont été nommés et étudiés pour la première fois par Howorka en 1977, alors qu'une classe équivalente de graphes a déjà été considérée en 1970 par Olaru et Sachs qui ont montré que ce sont des graphes parfaits.
CographeUn cographe est, en théorie des graphes, un graphe qui peut être généré par complémentation et union disjointe à partir du graphe à un nœud. La plupart des problèmes algorithmiques peuvent être résolus sur cette classe en temps polynomial, et même linaire, du fait de ses propriétés structurelles. Cette famille de graphe a été introduite par plusieurs auteurs indépendamment dans les années 1970 sous divers noms, notamment D*-graphes, hereditary Dacey graphs et 2-parity graphs.
Graphe parfaitEn théorie des graphes, le graphe parfait est une notion introduite par Claude Berge en 1960. Il s'agit d'un graphe pour lequel le nombre chromatique de chaque sous-graphe induit et la taille de la plus grande clique dudit sous-graphe induit sont égaux. Un graphe est 1-parfait si son nombre chromatique (noté ) est égal à la taille de sa plus grande clique (notée ) : . Dans ce cas, est parfait si et seulement si tous les sous graphes de sont 1-parfait.