Résumé
In computing, a programmable interrupt controller (PIC) is an integrated circuit that helps a microprocessor (or CPU) handle interrupt requests (IRQ) coming from multiple different sources (like external I/O devices) which may occur simultaneously. It helps prioritize IRQs so that the CPU switches execution to the most appropriate interrupt handler (ISR) after the PIC assesses the IRQ's relative priorities. Common modes of interrupt priority include hard priorities, rotating priorities, and cascading priorities. PICs often allow mapping input to outputs in a configurable way. On the PC architecture PIC are typically embedded into a southbridge chip whose internal architecture is defined by the chipset vendor's standards. PICs typically have a common set of registers: interrupt request register (IRR), in-service register (ISR), and interrupt mask register (IMR). The IRR specifies which interrupts are pending acknowledgement, and is typically a symbolic register which can not be directly accessed. The ISR register specifies which interrupts have been acknowledged, but are still waiting for an end of interrupt (EOI). The IMR specifies which interrupts are to be ignored and not acknowledged. A simple register schema such as this allows up to two distinct interrupt requests to be outstanding at one time, one waiting for acknowledgement, and one waiting for EOI. There are a number of common priority schemas in PICs including hard priorities, specific priorities, and rotating priorities. Interrupts may be either edge triggered or level triggered. There are a number of common ways of acknowledging an interrupt has completed when an EOI is issued. These include specifying which interrupt completed, using an implied interrupt which has completed (usually the highest priority pending in the ISR), and treating interrupt acknowledgement as the EOI. One of the best known PICs, the 8259A, was included in the x86 PC. In modern times, this is not included as a separate chip in an x86 PC, but rather as part of the motherboard's southbridge chipset.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
CS-473: System programming for Systems-on-chip
To efficiently program embedded systems an understanding of their architectures is required. After following this course students will be able to take an existing SoC, understand its architecture, and
CS-476: Embedded system design
Hardware-software co-design is a well known concept in embedded system design.It is also a concept required in designing FPGA-accelerators in data-centers.This course teaches how to transform algorith
EE-208: Microcontrollers and digital systems
Microcontrôleurs et conception de systèmes numériques couvre le fonctionnement interne d'un microcontrôleur, des notions de base d'architecture de processeur et de système informatique ainsi que les i
Afficher plus
Publications associées (14)
Concepts associés (9)
Non-maskable interrupt
In computing, a non-maskable interrupt (NMI) is a hardware interrupt that standard interrupt-masking techniques in the system cannot ignore. It typically occurs to signal attention for non-recoverable hardware errors. Some NMIs may be masked, but only by using proprietary methods specific to the particular NMI. An NMI is often used when response time is critical or when an interrupt should never be disabled during normal system operation.
Inter-processor interrupt
In computing, an inter-processor interrupt (IPI), also known as a shoulder tap, is a special type of interrupt by which one processor may interrupt another processor in a multiprocessor system if the interrupting processor requires action from the other processor. Actions that might be requested include: flushes of memory management unit caches, such as translation lookaside buffers, on other processors when memory mappings are changed by one processor; stopping when the system is being shut down by one processor.
Interruption matérielle
Une interruption matérielle (en anglais Interrupt ReQuest ou IRQ) est une interruption déclenchée par un périphérique d'entrée-sortie d'un microprocesseur ou d'un microcontrôleur. Les interruptions matérielles sont utilisées en informatique lorsqu’il est nécessaire de réagir en temps réel à un événement asynchrone, ou bien, de manière plus générale, afin d’économiser le temps d’exécution lié à une boucle de consultation (polling loop).
Afficher plus