Concepts associés (13)
Vérification formelle
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics. Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
Assertion (software development)
In computer programming, specifically when using the imperative programming paradigm, an assertion is a predicate (a Boolean-valued function over the state space, usually expressed as a logical proposition using the variables of a program) connected to a point in the program, that always should evaluate to true at that point in code execution. Assertions can help a programmer read the code, help a compiler compile it, or help the program detect its own defects.
Analyse statique de programmes
En informatique, la notion d’analyse statique de programmes couvre une variété de méthodes utilisées pour obtenir des informations sur le comportement d'un programme lors de son exécution sans réellement l'exécuter. C'est cette dernière restriction qui distingue l'analyse statique des analyses dynamiques (comme le débugage ou le profiling) qui s'attachent, elles, au suivi de l’exécution du programme. L’analyse statique est utilisée pour repérer des erreurs formelles de programmation ou de conception et pour déterminer la facilité ou la difficulté à maintenir le code.
Précondition
Une précondition est une condition appliquée au début d'un calcul ou d'une fonction informatique, et permettant d'en valider le résultat. Si P est un prédicat et S une substitution, P | S, qui se lit : le prédicat P préconditionne la substitution S, est défini par : [P | S] I ⟺ P & [S] I qui se lit : La substitution conditionnée [P | S] établit I si et seulement si P et ("et" logique) la substitution S établit que I est vrai. Du fait du &, si la précondition P est fausse, P & [S] I est faux. P | S a une fo
Postcondition
In computer programming, a postcondition is a condition or predicate that must always be true just after the execution of some section of code or after an operation in a formal specification. Postconditions are sometimes tested using assertions within the code itself. Often, postconditions are simply included in the documentation of the affected section of code. For example: The result of a factorial is always an integer and greater than or equal to 1.
Invariant
En mathématiques, le mot invariant possède suivant le contexte différentes significations (non équivalentes). Il est utilisé aussi bien en géométrie et en topologie qu'en analyse et en algèbre. Si g : E→E est une application, un invariant de g est un point fixe, c'est-à-dire un élément x de E qui est sa propre image par g : Pour une telle application g, une partie P de E est dite : invariante point par point si tous ses éléments sont des points fixes ; globalement invariante par g, ou stable par g, si , c'est-à-dire : (cette propriété est moins forte que la précédente).
Predicate transformer semantics
Predicate transformer semantics were introduced by Edsger Dijkstra in his seminal paper "Guarded commands, nondeterminacy and formal derivation of programs". They define the semantics of an imperative programming paradigm by assigning to each statement in this language a corresponding predicate transformer: a total function between two predicates on the state space of the statement. In this sense, predicate transformer semantics are a kind of denotational semantics.
Correction d'un algorithme
Un algorithme est correct s'il fait ce qu'on attend de lui. Plus précisément, rappelons qu'un algorithme est décrit par une spécification des données sur lesquelles l'algorithme va démarrer son calcul et une spécification du résultat produit par l'algorithme. Démontrer la correction de l'algorithme consiste à démontrer que l'algorithme retourne, quand il calcule en partant des données, un objet qui est un des résultats escomptés et qui satisfait la spécification du résultat comme énoncé dans la description de l'algorithme.
Sémantique des langages de programmation
En informatique théorique, la sémantique formelle (des langages de programmation) est l’étude de la signification des programmes informatiques vus en tant qu’objets mathématiques. Comme en linguistique, la sémantique, appliquée aux langages de programmation, désigne le lien entre un signifiant, le programme, et un signifié, objet mathématique. L'objet mathématique dépend des propriétés à connaître du programme. La sémantique est également le lien entre : le langage signifiant : le langage de programmation le langage signifié : logique de Hoare, automates.
Sémantique axiomatique
La sémantique axiomatique est une approche basée sur la logique mathématique qui sert à prouver qu'un programme informatique est correct. Cette sémantique tend à considérer un programme comme un transformateur de propriétés logiques, c'est-à-dire que la signification donnée au programme est un ensemble de prédicats qui sont vérifiés par l'état de la machine (caractérisé par sa mémoire) qui a exécuté le programme, à condition qu'un autre ensemble de prédicats ait été vérifié avant exécution.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.