Résumé
En chimie physique, et plus particulièrement en thermodynamique, l'activité chimique, ou activité, d'une espèce chimique exprime l'écart entre les propriétés de cette espèce pure ou dans un mélange réel et les propriétés de cette même espèce dans un état standard à la même température. La notion d'activité chimique est surtout employée pour les phases liquide et solide. Elle permet notamment le calcul des équilibres de phases et des équilibres chimiques. De nombreux modèles de coefficients d'activité ont été développés pour les phases liquides, avec comme état standard les liquides purs. Les grandeurs d'excès, calculées à partir des coefficients d'activité, expriment l'écart entre les grandeurs extensives d'un mélange réel et celles d'une solution idéale. À la suite de l'apparition de l'équation d'état de van der Waals en 1873, il devenait possible de calculer les équilibres de phases gaz-liquide. En effet, cette équation novatrice pour son époque permettait de calculer aussi bien les propriétés d'un gaz que celles d'un liquide. Willard Gibbs et Pierre Duhem introduisirent peu après (1875 à 1878) le potentiel chimique, important dans les équilibres de phases et les équilibres chimiques. Toutefois, le potentiel chimique se révéla difficile à manipuler, car il ne peut être calculé qu'à une constante additive près et non de façon absolue, de plus le potentiel chimique de toute espèce tend vers l'infini négatif à dilution infinie. En 1900 et 1901, Gilbert Lewis introduisit la fugacité, qui décrit l'écart de comportement d'un corps réel, pur ou en mélange, par rapport au même corps à l'état de gaz parfait pur. Cette notion se révéla efficace dans son application pour les gaz, mais les équations d'état représentant assez mal les phases liquides, Lewis introduisit en 1923 l'activité chimique, plus spécialement appliquée aux phases condensées (liquide ou solide). L'activité chimique est surtout utilisée dans l'expression des vitesses de réaction et des constantes d'équilibre dans l'étude des réactions et équilibres chimiques, et dans le calcul des coefficients de partage dans l'étude des équilibres de phases.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Proximité ontologique