Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les arbres de décision et de régression, les mesures d'impuretés, les algorithmes d'apprentissage et les implémentations, y compris les arbres d'inférence conditionnelle et la taille des arbres.
Présente les principes fondamentaux de la régression dans l'apprentissage automatique, couvrant la logistique des cours, les concepts clés et l'importance des fonctions de perte dans l'évaluation des modèles.
Explore la régression linéaire probabiliste et la régression de processus gaussien, en mettant l'accent sur la sélection du noyau et l'ajustement hyperparamétrique pour des prédictions précises.
Enquêter sur la façon dont le mois de naissance influence le succès des athlètes, analyser l'ensemble de données des athlètes japonais pour explorer les tendances dans les dates de naissance et les professions.
Couvre les principes et les applications de la régression linéaire, en mettant l'accent sur la construction d'un modèle simple pour faire des suggestions.
Couvre les prédicteurs de moyenne locaux, y compris les voisins les plus proches K et les estimateurs Nadaraya-Watson, ainsi que la régression linéaire locale et ses applications.
Couvre les arbres de décision pour la régression et la classification, expliquant la construction des arbres, la sélection des caractéristiques et les critères d'induction.
Explore les techniques d'apprentissage automatique pour la régression non linéaire et la prévision des tendances dans des ensembles de données complexes.