Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explique les étapes d'affectation et de mise à jour dans le clustering K-means, la minimisation des fonctions de perte et les effets métriques de distance.
Explore les regroupements de réseaux, les regroupements spectraux, l'algorithme des moyennes k, les propriétés des valeurs propres, l'estimation des modèles de blocs et la mesure de la similarité structurelle.
Explore le modèle de bloc stochastique, le regroupement spectral et la compréhension non paramétrique des modèles de bloc, en mettant l'accent sur les mesures pour comparer les modèles graphiques.
Couvre les bases de l'apprentissage automatique, y compris l'apprentissage supervisé et non supervisé, la régression, la classification et le regroupement.
Couvre les défis et les opportunités de l'exploration de données, des questions pratiques, des composants d'algorithmes et des applications telles que l'analyse du panier d'achat.