Résumé
Le plasma de quarks et de gluons, ou QGP (pour Quark-Gluon Plasma) est un état de la matière qui existe à des températures et/ou des densités extrêmement élevées. Cet état consiste en une « soupe » de quarks et de gluons (presque) libres. Elle diffère en cela des autres états de la matière, comme les solides, les liquides ou les gaz, dans lesquels les quarks et les gluons sont confinés dans les hadrons. Le était sans doute présent dans l'univers durant les microsecondes après le Big Bang. Aujourd'hui, des théories prédisent son existence au sein de certaines étoiles très denses, mais le seul moyen de l'étudier réellement est de « le fabriquer » artificiellement dans des accélérateurs de particules. Si on remonte dans le temps, l'univers était chaud. Si la température est suffisamment élevée, le noyau des atomes se vaporise. À ce stade, l'agitation thermique est supérieure aux forces de cohésion des noyaux, et l'on obtient un gaz de hadrons (autrement dit ce n'est pas un gaz de molécules ou d'atomes, mais un gaz avec des protons, des neutrons et autres particules constituées de quarks et/ou d'antiquarks). Avec une température encore plus élevée (typiquement au-dessus de mille milliards de degrés, environ cent mille fois la température au centre du Soleil), les hadrons eux-mêmes se vaporisent. La première création de plasma de quarks et de gluons fut annoncée en . Elle a eu lieu au CERN, en utilisant des noyaux de plomb accélérés à une énergie de ( par nucléon) par le Supersynchrotron à protons (SPS), puis projetés sur des cibles fixes. Les impacts amenèrent localement la matière à une température « supérieures à celle du cœur du Soleil » et avec des « densités d’énergie » plus grandes que celle du noyau atomique. Ensuite, l’étude de ce plasma se poursuit au Laboratoire national de Brookhaven, en particulier avec le Collisionneur d'ions lourds relativistes (RHIC ; Relativistic Heavy Ion Collider) construit dans ce but. Celui-ci peut accélérer deux faisceaux de noyaux lourds (cuivre ou or) en sens inverse, jusqu'à une énergie de par nucléons, puis les fait entrer en collision frontale.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.