Concept

Réactions nucléaires avec des ions lourds

Les réactions nucléaires avec des noyaux lourds (ou avec des ions lourds) sont des réactions provoquées par la collision de deux noyaux atomiques accélérés, soit naturellement comme les rayons cosmiques ou lors de la nucléosynthèse stellaire, soit artificiellement par des accélérateurs. On les distingue des réactions avec des particules légères (photons, protons, neutrons ou particule α) ; les noyaux du faisceau vont du plus léger comme le lithium (nombre de nucléons 6) aux plus lourds comme l'uranium ( 238). Le paramètre essentiel est l'énergie cinétique des noyaux accélérés, qui se mesure en MeV par nucléon (traditionnellement notée MeV/A). Désormais, la gamme d’énergie accessible est très étendue, elle va de quelques MeV/A à la quelques TeV/A (un facteur 10). Il en résulte une très grande variété de phénomènes. Par exemple : à basse énergie, création de deux noyaux en sortie, proches des noyaux initiaux ; à plus haute énergie, multifragmentation (noyaux légers et nucléons isolés) et création de particules élémentaires nouvelles ; dissociation des nucléons eux-mêmes aux énergies ultrarelativistes. Aux basses énergies (proches de la barrière coulombienne), les objectifs sont l’étude de la structure des noyaux et de leurs modes d’excitation, l’exploration de la vallée de la stabilité par création de noyaux radioactifs inconnus, dits exotiques : « Ces noyaux à durée de vie limitée, instables, radioactifs, [...] développent des structures inhabituelles (grande extension de matière, halo ou peau de neutrons, couches présentant de nouveaux nombres magiques) ». Aux plus hautes énergies, on étudie les propriétés de la matière nucléaire et de ses différentes phases (liquide superfluide, gaz de nucléons et de fragments nucléaires, plasma quark-gluon). Le début du est marqué par la découverte de la radioactivité naturelle. Les chercheurs démontrent très vite que les radioactivités α puis β sont des désintégrations nucléaires (Frederick Soddy et Ernest Rutherford, en 1903), puisque le noyau atomique après émission est différent du noyau initial.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
PHYS-311: Particles and fundamental interactions
Introduction générale sur l'état des connaissances en physique des particules élémentaires: de la cinématique relativiste à l'interprétation phénoménologique des collisions à haute énergie.
PHYS-448: Introduction to particle accelerators
The course presents basic physics ideas underlying the workings of modern accelerators. We will examine key features and limitations of these machines as used in accelerator driven sciences like high
PHYS-312: Nuclear and particle physics II
Introduction générale à la physique des noyaux atomiques: des états liés à la diffusion.
Afficher plus
Publications associées (163)
Concepts associés (7)
Plasma quarks-gluons
Le plasma de quarks et de gluons, ou QGP (pour Quark-Gluon Plasma) est un état de la matière qui existe à des températures et/ou des densités extrêmement élevées. Cet état consiste en une « soupe » de quarks et de gluons (presque) libres. Elle diffère en cela des autres états de la matière, comme les solides, les liquides ou les gaz, dans lesquels les quarks et les gluons sont confinés dans les hadrons. Le était sans doute présent dans l'univers durant les microsecondes après le Big Bang.
Histoire et chronologie de l'Univers
vignette|upright=1.5|Schéma simplifié des principales étapes de la formation de l'Univers.1- Big Bang.2- Ère de l'inflation.3- Découplage de l'interaction forte et faible et formation des particules.4- Formation des étoiles et galaxies. Lhistoire et la chronologie de l'Univers décrit l'évolution de l’Univers en s'appuyant sur le modèle standard de la cosmologie, fondé sur le modèle cosmologique du Big Bang et les recherches en cosmologie et en astronomie. Selon plusieurs estimations, l'âge de l'Univers serait d'environ d'années.
CMS (expérience)
L'expérience CMS (du nom du détecteur Compact Muon Solenoid, en français « solénoïde compact à muons ») est une des expériences de physique des particules du Grand collisionneur de hadrons (LHC) du CERN. Le détecteur CMS est situé dans une caverne souterraine à Cessy au point 5, en France, près de la frontière avec la Suisse. Il a été construit et est exploité par environ de presque , appartenant à scientifiques. Le détecteur a une forme cylindrique de de long et de diamètre, et pèse .
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.