Personnes associées (20)
Pierre Dillenbourg
Ancien instituteur primaire, Pierre Dillenbourg obtient un master en Sciences de l’Education (Université de Mons, Belgique). Dans son projet de master en 1986, il est l'un des premiers au monde à appliquer les méthodes de 'machine learning' à l'éducation, afin de développer un 'self-improving teaching system'. Ceci lui permettra de débuter une thèse de doctorat en informatique  à l'Université de Lancaster (UK) dans le domaine des applications éducatives de lintelligence artificielle. Il a été Maître d’Enseignement et de Recherche à lUniversité de Genève. Il rejoint l'EPFL en 2012, où Il fut le directeur du Centre de Recherche sur l'Apprentissage, la formation et ses technologies(CRAFT), puis académique du Centre pour l’'Education à l'Ere Digitale (CEDE) qui met en oeuvre la stratégie MOOC de l’'EPFL (plus de 2 millions d'inscriptions). Il est actuellement professeur ordinaire en technologies de formation aux sein de la faculté ‘Informatique et Communications’ et dirige laboratoire d'ergonomie éducative (CHILI). Depuis 2006, il a aussi été le directeur de DUAL-T, la 'leading house' dédiée aux technologies pour les systèmes de formation professionnelle duale. Il a fondé plusieurs start-ups dans l'éducation et rejoint plusieurs conseils d'administration. En 2017, Il a créé avec des collègues le 'Swiss EdTech Collider', un incubateur qui rassemble 80 start-ups dans le domaine des technologies éducatives. En 2018, ils ont lancé LEARN, le centre EPFL pour les sciences de l'apprentissage, lequel regroupe les initiatives locales en innovation éducative. Pierre est un 'inaugural fellow of the International Society of Learning Sciences'. Il est actuellement le Vice-Président Associé pour l'Education à l'EPFL.
Maryam Kamgarpour
Maryam Kamgarpour holds a Doctor of Philosophy in Engineering from the University of California, Berkeley and a Bachelor of Applied Science from University of Waterloo, Canada. Her research is on safe decision-making and control under uncertainty, game theory and mechanism design, mixed integer and stochastic optimization and control. Her theoretical research is motivated by control challenges arising in intelligent transportation networks, robotics, power grid systems and healthcare. She is the recipient of NASA High Potential Individual Award, NASA Excellence in Publication Award, and the European Union (ERC) Starting Grant.
Boi Faltings
Professor Faltings joined EPFL in 1987 as professor of Artificial Intelligence. He holds a PhD degree from the University of Illinois at Urbana-Champaign, and a diploma from the ETHZ. His research has spanned different areas of intelligent systems linked to model-based reasoning. In particular, he has contributed to qualitative spatial reasoning, case-based reasoning (especially for design problems), constraint satisfaction for design and logistics problems, multi-agent systems, and intelligent user interfaces. His current work is oriented towards multi-agent systems and social computing, using concepts of game theory, constraint optimization and machine learning. In 1999, Professor Faltings co-founded Iconomic Systems, a company that developed a new agent-based paradigm for travel e-commerce. He has since co-founded 5 other startup companies and advised several others. Prof. Faltings has published more than 150 refereed papers on his work, and participates regularly in program committees of all major conferences in the field. He has served as associate editor of of the major journals, including the Journal of Artificial Intelligence Research (JAIR) and the Artificial Intelligence Journal. From 1996 to 1998, he served as head of the computer science department.
Jean-Pierre Hubaux
Jean-Pierre Hubaux is a full professor at EPFL and head of the Laboratory for Data Security. Through his research, he contributes to laying the foundations and developing the tools for protecting privacy in today’s hyper-connected world. He has pioneered the areas of privacy and security in mobile/wireless networks and in personalized health. He is the academic director of the Center for Digital Trust (C4DT). He leads the  Data Protection in Personalized Health (DPPH) project funded by the ETH Council and is a co-chair of the Data Security Work Stream of the Global Alliance for Genomics and Health (GA4GH). From 2008 to 2019 he was one of the seven commissioners of the Swiss FCC. He is a Fellow of both IEEE (2008) and ACM (2010). Recent awards: two of his papers obtained distinctions at the IEEE Symposium on Security and Privacy in 2015 and 2018. He is among the most cited researchers in privacy protection and in information security.  Spoken languages: French, English, German, Italian
Marc Vielle
Marc Vielle has obtained a PhD degree in economics from the University Panthéon-Sorbonne (Paris). He worked as an economic researcher at the Laboratoire ERASME of Ecole Centrale de Paris and Université de Paris I (1987-1992), where he developed and managed the macroeconomic model HERMES-France. In 1991 he joined the Commissariat à l’Energie Atomique (CEA) as senior economist where he participated to the development of two models (GEM-E3 and PRIMES) funded by the European Commission. In 1996 he joined the Institut d’Economie Industrielle of Toulouse directed by Jean-Jacques Laffont. In 2003 he joined the Laboratoire d’Economie des Ressources Naturelles directed by Michel Moreaux. Since 2007, Marc works at EPFL. He is member of the GEMINI-E3 team and participates to the development of the world general equilibrium model GEMINI-E3. Marc has a strong experience in economic modeling (especially CGE modeling), quantitative analysis, energy and climate change policies. He has contributed to several research projects funded by national governments, European Commission and private companies. Skype 'Skype Me™!' buttonhttp://www.skype.com/go/skypebuttons

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.