In quantum field theory, the operator product expansion (OPE) is used as an axiom to define the product of fields as a sum over the same fields. As an axiom, it offers a non-perturbative approach to quantum field theory. One example is the vertex operator algebra, which has been used to construct two-dimensional conformal field theories. Whether this result can be extended to QFT in general, thus resolving many of the difficulties of a perturbative approach, remains an open research question.
In practical calculations, such as those needed for scattering amplitudes in various collider experiments, the operator product expansion is used in QCD sum rules to combine results from both perturbative and non-perturbative (condensate) calculations.
In 2D Euclidean field theory, operator product expansion is a Laurent series expansion associated with two operators. A Laurent series is a generalization of the Taylor series in that finitely many powers of the inverse of the expansion variable(s) are added to the Taylor series: pole(s) of finite order(s) are added to the series.
Heuristically, in quantum field theory one is interested in the result of physical observables represented by operators. If one wants to know the result of making two physical observations at two points and , one can time order these operators in increasing time.
If one maps coordinates in a conformal manner, one is often interested in radial ordering. This is the analogue of time ordering where increasing time has been mapped to some increasing radius on the complex plane. One is also interested in normal ordering of creation operators.
A radial-ordered OPE can be written as a normal-ordered OPE minus the non-normal-ordered terms. The non-normal-ordered terms can often be written as a commutator, and these have useful simplifying identities. The radial ordering supplies the convergence of the expansion.
The result is a convergent expansion of the product of two operators in terms of some terms that have poles in the complex plane (the Laurent terms) and terms that are finite.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
Le bootstrap conforme est une méthode non-perturbative pour résoudre des théories conformes des champs. Contrairement à des techniques traditionnelles de la théorie quantique des champs, le bootstrap n'utilise pas le Lagrangien de la théorie, et il s'applique également à des théories non-lagrangiennes. En revanche, le bootstrap ne fait que référence à des paramètres observables de la théorie, comme les dimensions d'échelle des opérateurs locaux et leurs fonctions à trois points.
In physics, Liouville field theory (or simply Liouville theory) is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation. Liouville theory is defined for all complex values of the central charge of its Virasoro symmetry algebra, but it is unitary only if and its classical limit is Although it is an interacting theory with a continuous spectrum, Liouville theory has been solved. In particular, its three-point function on the sphere has been determined analytically.
Une théorie conforme des champs ou théorie conforme (en anglais, conformal field theory ou CFT) est une variété particulière de théorie quantique des champs admettant le comme groupe de symétrie. Ce type de théorie est particulièrement étudié lorsque l'espace-temps y est bi-dimensionnel car en ce cas le groupe conforme est de dimension infinie et bien souvent la théorie est alors exactement soluble.
Explore l'expansion du produit opérateur (OPE) et son rôle dans Conformal Bootstrap.
Couvre les limites unitaires, l'expansion du produit opérateur, les blocs conformaux, et le bootstrap conformal dans la théorie du champ conformal.
Explore la théorie formelle des champs et l'expansion du produit opérateur, en mettant l'accent sur le rôle des symétries et le processus de quantification dans CFT.
Conformal Field Theories (CFTs) are crucial for our understanding of Quantum Field Theory (QFT). Because of their powerful symmetry properties, they play the role of signposts in the space of QFTs. Any method that gives us information about their structure ...
We consider 2d QFTs as relevant deformations of CFTs in the thermodynamic limit. Using causality and KPZ universality, we place a lower bound on the timescale characterizing the onset of hydrodynamics. The bound is determined parametrically in terms of the ...
We prove that in any unitary CFT, a twist gap in the spectrum of operator product expansion (OPE) of identical scalar quasiprimary operators (i.e. phi x phi) implies the existence of a family of quasiprimary operators O t,l with spins l ->.infinity and twi ...