thumb|upright|Raisonnement mathématique sur un tableau.
Les mathématiques (ou la mathématique) sont un ensemble de connaissances abstraites résultant de raisonnements logiques appliqués à des objets divers tels que les ensembles mathématiques, les nombres, les formes, les structures, les transformations ; ainsi qu'aux relations et opérations mathématiques qui existent entre ces objets. Elles sont aussi le domaine de recherche développant ces connaissances, ainsi que la discipline qui les enseigne.
Elles possèdent plusieurs branches telles que : l'arithmétique, l'algèbre, l'analyse, la géométrie, la logique mathématique, les probabilités Il existe également une certaine séparation entre les mathématiques pures et les mathématiques appliquées.
Les mathématiques se distinguent des autres sciences par un rapport particulier au réel car l'observation et l'expérience ne s'y portent pas sur des objets physiques ; les mathématiques ne sont pas une science empirique. Elles sont de nature entièrement intellectuelle, fondées sur des axiomes déclarés vrais ou sur des postulats provisoirement admis. Ces axiomes en constituent les fondements et ne dépendent donc d'aucune autre proposition. Un énoncé mathématique – dénommé généralement, après être validé, théorème, proposition, lemme, fait, scholie ou corollaire – est considéré comme valide lorsque le discours formel qui établit sa vérité respecte une certaine structure rationnelle appelée démonstration, ou raisonnement logicodéductif. Un énoncé qui n'a pas encore fait l'objet d'une démonstration mais qui est néanmoins considéré plausible est appelé conjecture.
Bien que les résultats mathématiques soient des vérités purement formelles, ils trouvent des applications dans les autres sciences et dans différents domaines de la technique. C'est ainsi qu'Eugene Wigner déclare que la .
Le mot « mathématique » vient du grec par l'intermédiaire du latin. Le mot μάθημα (máthēma) est dérivé du verbe μανθάνω (manthánô) (« apprendre »).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
La médaille Fields est la plus prestigieuse récompense en mathématiques avec le prix Abel. Elle est considérée comme équivalente à un prix Nobel inexistant pour cette discipline. Elle est attribuée tous les quatre ans depuis 1936 au cours du congrès international des mathématiciens à quatre mathématiciens au plus, tous de moins de . Les lauréats reçoivent chacun une médaille et . John Charles Fields, mathématicien canadien, propose la création de cette médaille en 1923 lors d'une réunion internationale à Toronto.
vignette|Exemple de figure fractale (détail de l'ensemble de Mandelbrot)|alt=Exemple de figure fractale (détail de l'ensemble de Mandelbrot). vignette|Ensemble de Julia en . Une figure fractale est un objet mathématique qui présente une structure similaire à toutes les échelles. C'est un objet géométrique « infiniment morcelé » dont des détails sont observables à une échelle arbitrairement choisie. En zoomant sur une partie de la figure, il est possible de retrouver toute la figure ; on dit alors qu’elle est « auto similaire ».
Giuseppe Peano (Spinetta di Cuneo (Coni), - Cavoretto, près de Turin, ) est un mathématicien et linguiste italien. Pionnier de l’approche formaliste des mathématiques, il développa, parallèlement à l’Allemand Richard Dedekind, une axiomatisation de l'arithmétique (1889). Il est par ailleurs l’inventeur d'une langue auxiliaire internationale, le Latino sine flexione (LsF) (le latin sans déclinaisons) en 1903. Il fut membre du comité qui créa la délégation pour l'adoption d'une langue auxiliaire internationale.
This introduction to Enviromental Engineering is meant to show the students how upcoming courses in mathematics, physics, chemistry, biology and other areas will be used to gain a scientific understan
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
Human babies have a natural desire to interact with new toys and objects, through which they learn how the world around them works, e.g., that glass shatters when dropped, but a rubber ball does not. When their predictions are proven incorrect, such as whe ...
The local physical properties - such as shape and flexibility - of the DNA double-helix is today widely believed to be influenced by nucleic acid sequence in a non-trivial way. Furthermore, there is strong evidence that these properties play a role in many ...
Motivated by the transfer of proofs between proof systems, and in particular from first order automated theorem provers (ATPs) to interactive theorem provers (ITPs), we specify an extension of the TPTP derivation text format to describe proofs in first-ord ...