Moyenne tronquéeUne moyenne tronquée, ou moyenne réduite, est une mesure statistique de centralité, similaire à la moyenne arithmétique et à la médiane, qui consiste à calculer une moyenne arithmétique en éliminant les valeurs extrêmes. Les , ont été inventées pour pallier la sensibilité des statistiques aux valeurs aberrantes, ce qu'on appelle la robustesse statistique.
Inégalité de Bienaymé-TchebychevEn théorie des probabilités, l'inégalité de Bienaymé-Tchebychev, est une inégalité de concentration permettant de montrer qu'une variable aléatoire prendra avec une faible probabilité une valeur relativement lointaine de son espérance. Ce résultat s'applique dans des cas très divers, nécessitant la connaissance de peu de propriétés (seules l'espérance et la variance doivent être connues), et permet de démontrer la loi faible des grands nombres.
Symmetric probability distributionIn statistics, a symmetric probability distribution is a probability distribution—an assignment of probabilities to possible occurrences—which is unchanged when its probability density function (for continuous probability distribution) or probability mass function (for discrete random variables) is reflected around a vertical line at some value of the random variable represented by the distribution. This vertical line is the line of symmetry of the distribution.
Range (statistics)In statistics, the range of a set of data is the difference between the largest and smallest values, the result of subtracting the sample maximum and minimum. It is expressed in the same units as the data. In descriptive statistics, range is the size of the smallest interval which contains all the data and provides an indication of statistical dispersion. Since it only depends on two of the observations, it is most useful in representing the dispersion of small data sets.
MidhingeIn statistics, the midhinge is the average of the first and third quartiles and is thus a measure of location. Equivalently, it is the 25% trimmed mid-range or 25% midsummary; it is an L-estimator. The midhinge is related to the interquartile range (IQR), the difference of the third and first quartiles (i.e. ), which is a measure of statistical dispersion. The two are complementary in sense that if one knows the midhinge and the IQR, one can find the first and third quartiles.
Inégalité de JensenEn mathématiques, et plus précisément en analyse, l’inégalité de Jensen est une relation utile et très générale concernant les fonctions convexes, due au mathématicien danois Johan Jensen et dont il donna la preuve en 1906. On peut l'écrire de deux manières : discrète ou intégrale. Elle apparaît notamment en analyse, en théorie de la mesure et en probabilités (théorème de Rao-Blackwell), mais également en physique statistique, en mécanique quantique et en théorie de l'information (sous le nom d'inégalité de Gibbs).
Trimmed estimatorIn statistics, a trimmed estimator is an estimator derived from another estimator by excluding some of the extreme values, a process called truncation. This is generally done to obtain a more robust statistic, and the extreme values are considered outliers. Trimmed estimators also often have higher efficiency for mixture distributions and heavy-tailed distributions than the corresponding untrimmed estimator, at the cost of lower efficiency for other distributions, such as the normal distribution.
Statistical theoryThe theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches. Within a given approach, statistical theory gives ways of comparing statistical procedures; it can find a best possible procedure within a given context for given statistical problems, or can provide guidance on the choice between alternative procedures.
ÉquivarianceEn mathématiques, léquivariance est une forme de symétrie de fonctions d'un espace par symétrie avec un autre (tels que les espaces symétriques). Une application est dite équivariante par l'action d'un groupe de symétrie si ce groupe peut agir sur ses ensembles de départ et d'arrivée et quand cette application commute avec l'action de groupe. Autrement dit, appliquer une transformation du groupe de symétrie puis effectuer l'application produit le même résultat que d'effectuer ces opérations en sens inverse.
Algorithme de sélectionEn algorithmique, un algorithme de sélection est une méthode ayant pour but de trouver le k-ième plus petit élément d'un ensemble d'objets (étant donné un ordre et un entier k). La question de la sélection est un problème essentiel en algorithmique, notamment dans la recherche du maximum, du minimum et de la médiane. Plusieurs algorithmes ont été proposés et plusieurs contextes ont été étudiés : algorithmes en ligne, complexité amortie, complexité en moyenne, ensemble d'objet particuliers etc.