Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'algorithme de maximisation des attentes et les techniques de regroupement, en mettant l'accent sur l'échantillonnage Gibbs et l'équilibre détaillé.
Explore le regroupement des données génomiques, l'analyse de la survie, l'identification des gènes et l'importance statistique dans la recherche sur le cancer.
Couvre l'exploitation efficace des données grâce à des méthodes de clustering et à l'optimisation des rendements du marché à l'aide du clustering d'actifs.
Déplacez-vous dans les techniques avancées d'optimisation Spark, en mettant l'accent sur la partition des données, les opérations de shuffle et la gestion de la mémoire.
Explore les méthodes de clustering K-means et DBSCAN, en discutant des propriétés, des inconvénients, de l'initialisation et de la sélection optimale des clusters.
Couvre la théorie et la pratique des algorithmes de regroupement, y compris PCA, K-means, Fisher LDA, groupement spectral et réduction de dimensionnalité.