Résumé
External validity is the validity of applying the conclusions of a scientific study outside the context of that study. In other words, it is the extent to which the results of a study can be generalized to and across other situations, people, stimuli, and times. In contrast, internal validity is the validity of conclusions drawn within the context of a particular study. Because general conclusions are almost always a goal in research, external validity is an important property of any study. Mathematical analysis of external validity concerns a determination of whether generalization across heterogeneous populations is feasible, and devising statistical and computational methods that produce valid generalizations. "A threat to external validity is an explanation of how you might be wrong in making a generalization from the findings of a particular study." In most cases, generalizability is limited when the effect of one factor (i.e. the independent variable) depends on other factors. Therefore, all threats to external validity can be described as statistical interactions. Some examples include: Aptitude by treatment Interaction: The sample may have certain features that interact with the independent variable, limiting generalizability. For example, comparative psychotherapy studies often employ specific samples (e.g. volunteers, highly depressed, no comorbidity). If psychotherapy is found effective for these sample patients, will it also be effective for non-volunteers or the mildly depressed or patients with concurrent other disorders? If not, the external validity of the study would be limited. Situation by treatment interactions: All situational specifics (e.g. treatment conditions, time, location, lighting, noise, treatment administration, investigator, timing, scope and extent of measurement, etc.) of a study potentially limit generalizability. Pre-test by treatment interactions: If cause-effect relationships can only be found when pre-tests are carried out, then this also limits the generality of the findings.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (30)
EE-320: Analog IC design
Introduction to the design of analog CMOS integrated circuits at the transistor level. Understanding and design of basic structures.
EE-110: Logic systems (for MT)
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
MGT-581: Introduction to econometrics
The course provides an introduction to econometrics. The objective is to learn how to make valid (i.e., causal) inference from economic and social data. It explains the main estimators and present met
Afficher plus
Publications associées (102)
Concepts associés (6)
Validité interne
La validité interne et la validité externe sont des concepts proposés par Donald Campbell dans les années 1950 pour estimer le degré de confiance que l'on peut avoir dans le résultat d'une expérience scientifique. Assurer une bonne validité interne, c'est concevoir, mettre en œuvre et exploiter une expérience de façon à « [limiter] autant que faire se peut les biais imputables aux instruments de collecte ou de traitement des données ».
Facteur de confusion
En statistique, un facteur de confusion, ou facteur confondant, ou encore variable confondante, est une variable aléatoire qui influence à la fois la variable dépendante et les variables explicatives. Ces facteurs sont notamment à l'origine de la différence entre corrélation et causalité (Cum hoc ergo propter hoc). En santé publique, c'est une variable liée à la fois au facteur de risque et à la maladie ou à un autre évènement de l'étude lié à la santé, ce qui est susceptible d'induire un biais dans l'analyse du lien (entre maladie et facteur de risque), produisant ainsi de fausses associations.
Construct validity
Construct validity concerns how well a set of indicators represent or reflect a concept that is not directly measurable. Construct validation is the accumulation of evidence to support the interpretation of what a measure reflects. Modern validity theory defines construct validity as the overarching concern of validity research, subsuming all other types of validity evidence such as content validity and criterion validity.
Afficher plus