Concept

Minimum railway curve radius

The minimum railway curve radius is the shortest allowable design radius for the centerline of railway tracks under a particular set of conditions. It has an important bearing on construction costs and operating costs and, in combination with superelevation (difference in elevation of the two rails) in the case of train tracks, determines the maximum safe speed of a curve. The minimum radius of a curve is one parameter in the design of railway vehicles as well as trams; monorails and automated guideways are also subject to a minimum radius. The first proper railway was the Liverpool and Manchester Railway, which opened in 1830. Like the tram roads that had preceded it over a hundred years, the L&M had gentle curves and gradients. Reasons for these gentle curves include the lack of strength of the track, which might have overturned if the curves were too sharp causing derailments. The gentler the curves, the greater the visibility, thus boosting safety via increased situational awareness. The earliest were made in short lengths of wrought iron, which does not bend like later steel rails introduced in the 1850s. Minimum curve radii for railways are governed by the speed operated and by the mechanical ability of the rolling stock to adjust to the curvature. In North America, equipment for unlimited interchange between railway companies is built to accommodate for a radius, but normally a radius is used as a minimum, as some freight carriages (freight cars) are handled by special agreement between railways that cannot take the sharper curvature. For the handling of long freight trains, a minimum radius is preferred. The sharpest curves tend to be on the narrowest of narrow gauge railways, where almost all the equipment is proportionately smaller. But standard gauge can also have tight curves, if rolling stocks are built for it, which however removes the standardisation benefit of standard gauge. Tramways can have below curve radius. As the need for more powerful steam locomotives grew, the need for more driving wheels on a longer, fixed wheelbase grew too.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (16)
Track gauge conversion
Gauge conversion is the changing of one railway track gauge (the distance between the running rails) to another. If tracks are converted to a narrower gauge, the existing sleepers (ties) may be used. However, replacement is required if the conversion is to a wider gauge. Some sleepers may be long enough to accommodate the fittings of both existing and alternative gauges. Wooden sleepers are suitable for conversion because they can be drilled for the repositioned rail spikes.
Degree of curvature
Degree of curve or degree of curvature is a measure of curvature of a circular arc used in civil engineering for its easy use in layout surveying. The degree of curvature is defined as the central angle to the ends of an agreed length of either an arc or a chord; various lengths are commonly used in different areas of practice. This angle is also the change in forward direction as that portion of the curve is traveled. In an n-degree curve, the forward bearing changes by n degrees over the standard length of arc or chord.
Rayon de courbure
vignette|Rayon de courbure d'un tracé. Le rayon de courbure d'un tracé, en général noté ρ (lettre grecque rhô) indique son niveau d'incurvation : plus le rayon de courbure est élevé, plus le tracé se rapproche d'une ligne droite, et inversement. Mathématiquement, le rayon de courbure est la valeur absolue du rayon du cercle tangent à la courbe au point recherché, cercle qui y « épouse cette courbe le mieux possible ». Ce cercle est appelé cercle osculateur à la courbe en ce point.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.