In differential geometry, the radius of curvature (Rc), R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or combinations thereof. In the case of a space curve, the radius of curvature is the length of the curvature vector. In the case of a plane curve, then R is the absolute value of where s is the arc length from a fixed point on the curve, φ is the tangential angle and κ is the curvature. If the curve is given in Cartesian coordinates as y(x), i.e., as the graph of a function, then the radius of curvature is (assuming the curve is differentiable up to order 2): and denotes the absolute value of z. Also in Classical mechanics branch of Physics Radius of curvature is given by (Net Velocity)2/Acceleration Perpendicular If the curve is given parametrically by functions x(t) and y(t), then the radius of curvature is Heuristically, this result can be interpreted as If γ : R → Rn is a parametrized curve in Rn then the radius of curvature at each point of the curve, ρ : R → R, is given by As a special case, if f(t) is a function from R to R, then the radius of curvature of its graph, γ(t) = (t, f(t)), is Let γ be as above, and fix t. We want to find the radius ρ of a parametrized circle which matches γ in its zeroth, first, and second derivatives at t. Clearly the radius will not depend on the position γ(t), only on the velocity γ′(t) and acceleration γ′′(t). There are only three independent scalars that can be obtained from two vectors v and w, namely v · v, v · w, and w · w. Thus the radius of curvature must be a function of the three scalars ^2, ^2 and γ′(t) · γ′′(t). The general equation for a parametrized circle in Rn is where c ∈ Rn is the center of the circle (irrelevant since it disappears in the derivatives), a,b ∈ Rn are perpendicular vectors of length ρ (that is, a · a = b · b = ρ^2 and a · b = 0), and h : R → R is an arbitrary function which is twice differentiable at t.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (22)
ME-411: Mechanics of slender structures
Analysis of the mechanical response and deformation of slender structural elements.
MATH-213: Differential geometry I - curves and surfaces
Ce cours est une introduction à la géométrie différentielle classique des courbes et des surfaces, principalement dans le plan et l'espace euclidien.
CIVIL-522: Seismic engineering
This course deals with the main aspects of seismic design and assessment of buildings including conceptual design. It covers different structural design and evaluation philosophies for new and existin
Afficher plus
Séances de cours associées (109)
Géométrie hyperbolique
Introduit une géométrie hyperbolique, couvrant des espaces métriques complets, des isométries et une courbure gaussienne dans la dimension 2.
Théorie des faisceaux non linéaires: Mécanique de la structure mince
Couvre les relations tension-déplacement, les simplifications, les relations constitutives, les équations d'équilibre et les anneaux circulaires.
Miroirs concaves: longueur focale et lois de réflexion
Explore la distance focale des miroirs concaves et des lois de réflexion.
Afficher plus
Publications associées (67)
Concepts associés (16)
Cercle osculateur
droite|vignette|upright=1.3|Au point M de la courbe rouge, le cercle osculateur (en pointillés) approche mieux la courbe qu'un cercle tangent quelconque (passant par N). Son centre O et son rayon R sont le centre de courbure et le rayon de courbure de la courbe en M. En géométrie différentielle, le cercle osculateur ou cercle de courbure en un point d'une courbe est un objet permettant la description locale de cette courbe.
Minimum railway curve radius
The minimum railway curve radius is the shortest allowable design radius for the centerline of railway tracks under a particular set of conditions. It has an important bearing on construction costs and operating costs and, in combination with superelevation (difference in elevation of the two rails) in the case of train tracks, determines the maximum safe speed of a curve. The minimum radius of a curve is one parameter in the design of railway vehicles as well as trams; monorails and automated guideways are also subject to a minimum radius.
Degree of curvature
Degree of curve or degree of curvature is a measure of curvature of a circular arc used in civil engineering for its easy use in layout surveying. The degree of curvature is defined as the central angle to the ends of an agreed length of either an arc or a chord; various lengths are commonly used in different areas of practice. This angle is also the change in forward direction as that portion of the curve is traveled. In an n-degree curve, the forward bearing changes by n degrees over the standard length of arc or chord.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.