Résumé
Expliquer la stabilité d'un solide est une question centrale en physique de la matière condensée. Possibles dans le cas des molécules, les calculs quantiques les plus précis montrent souvent une grande diversité pour les configurations atomiques de faible énergie. Du fait de leur taille macroscopique, et donc du nombre astronomique d'atomes mis en jeu, la même étude pour les solides impose que de nombreuses approximations soient faites pour calculer leur énergie de cohésion. Bien que certains effets structuraux fins ne soient expliqués que par l'intervention de critères quantiques, il est toujours bien utile de pouvoir approximer l’énergie de cohésion comme une somme d'interactions de type classique, par exemple par des potentiels à deux ou plusieurs termes. Il est alors souvent possible de proposer des règles locales, de nature chimique, qui mènent aux configurations de basse énergie et gouvernent l'ordre structurel ou chimique dans le système considéré. La frustration géométrique concerne les cas où l'ordre local ne peut se propager librement dans tout l'espace. Cette définition suffisamment générale de la frustration ne se restreint pas qu’aux organisations atomiques, ni même aux systèmes discrets. Ainsi, dans les cristaux liquides, si l'on passe à un modèle continu, il est possible de caractériser certains systèmes comme étant géométriquement frustrés : les systèmes de molécules cholestériques chirales ou bien ensembles de bicouches d'amphiphiles entrent dans ce cadre. Une caractéristique commune à tous ces systèmes est que, même avec des règles locales simples, ils présentent une assez grande variété de réalisations structurales, souvent complexes. Cela rappelle un champ voisin de la physique, celui des systèmes de spins frustrés, dont l'étude du paysage énergétique tourmenté a fait l'objet de contributions nombreuses et profondes. Il n'est pas inutile de préciser pour autant la différence avec la frustration géométrique au sens strict.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.