Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We consider co-rotational wave maps from (3+1) Minkowski space into the three-sphere. This is an energy supercritical model which is known to exhibit finite time blow up via self-similar solutions. The ground state self-similar solution f0 is known in c ...
A Poisson process P-lambda on R-d with causal structure inherited from the the usual Minkowski metric on R-d has a normalised discrete causal distance D-lambda (x, y) given by the height of the longest causal chain normalised by lambda(1/d)c(d). We prove t ...
We study the Cauchy problem for the one-dimensional wave equation \[ \partial_t^2 u(t,x)-\partial_x^2 u(t,x)+V(x)u(t,x)=0. \] The potential V is assumed to be smooth with asymptotic behavior \[ V(x)\sim -\tfrac14 |x|^{-2}\mbox{ as } |x|\to \infty. \] ...
Planck data have been used to provide stringent new constraints on cosmic strings and other defects. We describe forecasts of the CMB power spectrum induced by cosmic strings, calculating these from network models and simulations using line-of-sight Boltzm ...
We prove global regularity, scattering and a priori bounds for the energy critical Maxwell-Klein-Gordon equation relative to the Coulomb gauge on (1+4)-dimensional Minkowski space. The proof is based upon a modified Bahouri-Gerard profile decomposition [1] ...
We establish an explicit upper bound for the Euclidean minimum of a number field which depends, in a precise manner, only on its discriminant and the number of real and complex embeddings. Such bounds were shown to exist by Davenport and Swinnerton-Dyer ([ ...
We consider the hyperbolic Yang-Mills equation on the Minkowski space \reels4+1. Our main result asserts that this problem is globally well-posed for all initial data whose energy is sufficiently small. This solves a longstanding open problem. ...
We study time-like hypersurfaces with vanishing mean curvature in the (3+1) dimensional Minkowski space, which are the hyperbolic counterparts to minimal embeddings of Riemannian manifolds. The catenoid is a stationary solution of the associated Cauchy pro ...
We establish basic local existence as well as a stability result concerning small perturbations of the Catenoid minimal surface in R-3 under hyperbolic vanishing mean curvature flow. ...
Wave maps are the simplest wave equations taking their values in a Riemannian manifold (M,g). Their Lagrangian is the same as for the scalar equation, the only difference being that lengths are measured with respect to the metric g. By Noether's theorem, s ...