In mathematics, particularly homological algebra, the zig-zag lemma asserts the existence of a particular long exact sequence in the homology groups of certain chain complexes. The result is valid in every .
In an abelian category (such as the category of abelian groups or the category of vector spaces over a given field), let and be chain complexes that fit into the following short exact sequence:
Such a sequence is shorthand for the following commutative diagram:
where the rows are exact sequences and each column is a chain complex.
The zig-zag lemma asserts that there is a collection of boundary maps
that makes the following sequence exact:
The maps and are the usual maps induced by homology. The boundary maps are explained below. The name of the lemma arises from the "zig-zag" behavior of the maps in the sequence. A variant version of the zig-zag lemma is commonly known as the "snake lemma" (it extracts the essence of the proof of the zig-zag lemma given below).
The maps are defined using a standard diagram chasing argument. Let represent a class in , so . Exactness of the row implies that is surjective, so there must be some with . By commutativity of the diagram,
By exactness,
Thus, since is injective, there is a unique element such that . This is a cycle, since is injective and
since . That is, . This means is a cycle, so it represents a class in . We can now define
With the boundary maps defined, one can show that they are well-defined (that is, independent of the choices of c and b). The proof uses diagram chasing arguments similar to that above. Such arguments are also used to show that the sequence in homology is exact at each group.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
En mathématiques, et plus spécialement dans les applications de la théorie des catégories, un diagramme commutatif est un diagramme d'objets et de morphismes tels que, si l'on suit à travers le diagramme un chemin d'un objet à un autre, le résultat par composition des morphismes ne dépend que de l'objet de départ et de l'objet d'arrivée. Cette définition peut être visualisée par le dessin élémentaire ci-contre. On se place dans la catégorie Ens. Les objets sont les ensembles A, B et C en réalité tous égaux ici à {1,2,3,4}.
Le lemme du serpent, en mathématiques, et en particulier en homologie et cohomologie, est un énoncé valide dans toute catégorie abélienne ; c'est un outil des plus importants pour la construction de suites exactes, objets omniprésents en homologie et ses applications, par exemple en topologie algébrique. Les morphismes ainsi construits sont généralement appelés « morphismes connectants ».
En mathématiques, plus particulièrement en algèbre homologique, une suite exacte est une suite (finie ou infinie) d'objets et de morphismes entre ces objets telle que l' de l'un est égale au noyau du suivant. Dans le contexte de la théorie des groupes, on dit que la suite (finie ou infinie) de groupes et de morphismes de groupes est exacte si pour tout entier naturel n on a . Dans ce qui précède, sont des groupes et des morphismes de groupes avec . Dans la suite, 0 dénote le groupe trivial, qui est l'objet nul dans la catégorie des groupes.
Couvre le lemme Zig Zag et la longue séquence exacte de l'homologie relative.
Explore la théorie de l'homotopie des complexes de chaînes, en se concentrant sur les catégories de modèles, les équivalences faibles, et l'axiome de rétractation.
Couvre le théorème algébrique de la Kunneth, expliquant les complexes de chaîne et les calculs de cohomologie.
We present a new information-theoretic result which we call the Chaining Lemma. It considers a so-called "chain" of random variables, defined by a source distribution X-(0) with high min-entropy and a number (say, t in total) of arbitrary functions (T-1,.. ...