Résumé
In mathematics, a negligible set is a set that is small enough that it can be ignored for some purpose. As common examples, finite sets can be ignored when studying the limit of a sequence, and null sets can be ignored when studying the integral of a measurable function. Negligible sets define several useful concepts that can be applied in various situations, such as truth almost everywhere. In order for these to work, it is generally only necessary that the negligible sets form an ideal; that is, that the empty set be negligible, the union of two negligible sets be negligible, and any subset of a negligible set be negligible. For some purposes, we also need this ideal to be a sigma-ideal, so that countable unions of negligible sets are also negligible. If I and J are both ideals of subsets of the same set X, then one may speak of I-negligible and J-negligible subsets. The opposite of a negligible set is a generic property, which has various forms. Let X be the set N of natural numbers, and let a subset of N be negligible if it is finite. Then the negligible sets form an ideal. This idea can be applied to any infinite set; but if applied to a finite set, every subset will be negligible, which is not a very useful notion. Or let X be an uncountable set, and let a subset of X be negligible if it is countable. Then the negligible sets form a sigma-ideal. Let X be a measurable space equipped with a measure m, and let a subset of X be negligible if it is m-null. Then the negligible sets form a sigma-ideal. Every sigma-ideal on X can be recovered in this way by placing a suitable measure on X, although the measure may be rather pathological. Let X be the set R of real numbers, and let a subset A of R be negligible if for each ε > 0, there exists a finite or countable collection I1, I2, ... of (possibly overlapping) intervals satisfying: and This is a special case of the preceding example, using Lebesgue measure, but described in elementary terms.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MATH-201: Analysis III
Calcul différentiel et intégral. Eléments d'analyse complexe.
Publications associées (3)
Concepts associés (3)
Ensemble maigre
En topologie, dans le contexte des espaces de Baire, un ensemble maigre (on dit aussi de première catégorie) est une partie d'un espace de Baire qui, en un sens technique, peut être considérée comme de taille infime. Un ensemble comaigre est le complémentaire d'un ensemble maigre. Une partie qui n'est pas maigre est dite de deuxième catégorie. Un sous-ensemble d'un espace topologique E est dit maigre lorsqu'il est contenu dans une réunion dénombrable de fermés de E qui sont tous d'intérieur vide.
Presque tous
En mathématiques, le terme « presque tous » signifie « tous sauf une quantité négligeable ». Plus précisément, si est un ensemble, « presque tous les éléments de » signifie « tous les éléments de à l'exception de ceux d'un sous-ensemble négligeable de ». La signification de « négligeable » dépend du contexte mathématique : par exemple, cela peut signifier fini, dénombrable ou de mesure nulle . En revanche, " presque aucun " signifie "un montant négligeable"; c'est-à-dire "presque aucun élément de " signifie "une quantité négligeable d'éléments de ".
Almost everywhere
In measure theory (a branch of mathematical analysis), a property holds almost everywhere if, in a technical sense, the set for which the property holds takes up nearly all possibilities. The notion of "almost everywhere" is a companion notion to the concept of measure zero, and is analogous to the notion of almost surely in probability theory. More specifically, a property holds almost everywhere if it holds for all elements in a set except a subset of measure zero, or equivalently, if the set of elements for which the property holds is conull.