Résumé
thumb|Vue d'artiste de la théorie des supercordes. La théorie des supercordes est une tentative pour expliquer l'existence de toutes les particules et forces fondamentales de la nature, en les modélisant comme les vibrations de minuscules cordes supersymétriques. Au début du , elle est considérée comme la plus féconde des théories pour une gravité quantique, même si elle souffre des mêmes défauts que la théorie des cordes en raison de l'impossibilité de la vérifier par l'expérimentation. Actuellement, le problème le plus fondamental en physique théorique est la grande unification, ou, autrement dit, l'harmonisation de la théorie de la relativité générale, qui décrit la gravité, et s'applique bien aux grandes structures (étoiles, planètes, galaxies), et de la mécanique quantique qui décrit les trois autres forces fondamentales connues : électromagnétique (EM), l'interaction faible (W) et forte (S). La théorie des cordes ne pourra peut-être jamais être prouvée. La physique des particules élémentaires modélise celles-ci comme des points dans l'espace et les fait interagir à distance nulle, ce qui amène à des résultats de valeurs infinies. Les physiciens ont développé des techniques mathématiques, dites de renormalisation, pour éliminer ces infinis, qui fonctionnent pour les forces électromagnétiques, nucléaire forte et nucléaire faible, mais pas pour la gravité : à distance nulle la théorie de la gravité d'Einstein ne fonctionne pas. L'idée de départ est que les constituants fondamentaux de la réalité seraient des cordes d'une longueur de l'ordre de la longueur de Planck (approx. ), qui vibreraient à des fréquences de résonance. Par exemple, cette théorie prédit que le graviton (la particule candidate pour la gravité quantique, qui transmettrait la force de gravitation) serait une corde ayant une amplitude d'onde de zéro. Comme en physique quantique, elle aurait un spin de deux et une masse nulle. Une autre conclusion importante est qu'il n'y a pas de différence mesurable entre des cordes qui s'enroulent autour d'une dimension et celles qui se déplacent dans les dimensions (i.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.