Passer au contenu principal
Graph
Search
fr
en
Se Connecter
Recherche
Tous
Catégories
Concepts
Cours
Séances de cours
MOOCs
Personnes
Exercices
Publications
Start-ups
Unités
Afficher tous les résultats pour
Accueil
Concept
Algèbre générale
Graph Chatbot
Séances de cours associées (31)
Connectez-vous pour filtrer par séance de cours
Connectez-vous pour filtrer par séance de cours
Réinitialiser
Précédent
Page 3 sur 4
Suivant
Positions relatives dans l'espace
Couvre la description précise du positionnement relatif des objets dans l'espace.
Polynômes : Définition et opérations
Couvre les polynômes, leurs opérations, le théorème de division, et fournit des exemples illustratifs.
Anneaux et idéaux
Explore les anneaux, les domaines, les champs et les idéaux, en mettant l'accent sur les constructions et les propriétés.
Groupes d'homotopie supérieure: généralisation et structure
Explore la généralisation et la structure des groupes homotopiques supérieurs, y compris leur abéliosité, leur contexte historique et leurs propriétés des espaces H.
Topologie : Critères de séparation et espaces de quotient
Discute des critères de séparation et des espaces de quotient en topologie, en mettant l'accent sur leurs applications et leurs fondements théoriques.
Structures mathématiques: thèmes sélectionnés
Couvre certains sujets mathématiques, dont les nombres, les approximations, les structures algébriques, les limites et les séries.
Circuits numériques: Bases
Couvre le traitement du signal numérique, la logique binaire et booléenne, et des exemples pratiques de circuits numériques.
Structures algébriques : Champs et espaces vectoriels
Couvre les nombres premiers, les vecteurs, la géométrie 3D, la cristallographie et les structures algébriques dans la science des matériaux.
Cardinalité et théorie des groupes
Explore la cardinalité dans les ensembles et les propriétés des groupes, y compris la commutativité et des exemples de groupes abstraits.
Polynômes et endomorphismes
Couvre les fondamentaux des polynômes, des endomorphismes, des divisions, des racines, des matrices et des homomorphismes algébriques.