Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this note, we improve on results of Hoppen, Kohayakawa and Lefmann about the maximum number of edge colorings without monochromatic copies of a star of a fixed size that a graph on n vertices may admit. Our results rely on an improved application of an ...
We study in this thesis the asymptotic behavior of optimal paths on a random graph model, the configuration model, for which we assign continuous random positive weights on its edges.
We start by describing the asymptotic behavior of the diameter and the f ...
The emerging field of graph signal processing (GSP) allows one to transpose classical signal processing operations (e.g., filtering) to signals on graphs. The GSP framework is generally built upon the graph Laplacian, which plays a crucial role in studying ...
Many optimization, inference, and learning tasks can be accomplished efficiently by means of decentralized processing algorithms where the network topology (i.e., the graph) plays a critical role in enabling the interactions among neighboring nodes. There ...
In this article, we are interested in adaptive and distributed estimation of graph filters from streaming data. We formulate this problem as a consensus estimation problem over graphs, which can be addressed with diffusion LMS strategies. Most popular grap ...
The articles in this special section focus on graph signal processing. Generically, the networks that sustain our societies can be understood as complex systems formed by multiple nodes, where global network behavior arises from local interactions between ...
Graph learning methods have recently been receiving increasing interest as means to infer structure in datasets. Most of the recent approaches focus on different relationships between a graph and data sample distributions, mostly in settings where all avai ...
An abstract topological graph (briefly an AT-graph) is a pair A = (G, X) where G = (V, E) is a graph and X. E2 is a set of pairs of its edges. The AT-graph A is simply realizable if G can be drawn in the plane so that each pair of edges from X crosses exac ...
This article introduces a new class of models for multiple networks. The core idea is to parameterize a distribution on labeled graphs in terms of a Frechet mean graph (which depends on a user-specified choice of metric or graph distance) and a parameter t ...
Let G be a drawing of a graph with n vertices and e > 4n edges, in which no two adjacent edges cross and any pair of independent edges cross at most once. According to the celebrated Crossing Lemma of Ajtai, Chvatal, Newborn, Szemeredi and Leighton, the nu ...