Utility computing, or computer utility, is a service provisioning model in which a service provider makes computing resources and infrastructure management available to the customer as needed, and charges them for specific usage rather than a flat rate. Like other types of on-demand computing (such as grid computing), the utility model seeks to maximize the efficient use of resources and/or minimize associated costs. Utility is the packaging of system resources, such as computation, storage and services, as a metered service. This model has the advantage of a low or no initial cost to acquire computer resources; instead, resources are essentially rented.
This repackaging of computing services became the foundation of the shift to "on demand" computing, software as a service and cloud computing models that further propagated the idea of computing, application and network as a service.
There was some initial skepticism about such a significant shift. However, the new model of computing caught on and eventually became mainstream.
IBM, HP and Microsoft were early leaders in the new field of utility computing, with their business units and researchers working on the architecture, payment and development challenges of the new computing model. Google, Amazon and others started to take the lead in 2008, as they established their own utility services for computing, storage and applications.
Utility computing can support grid computing which has the characteristic of very large computations or sudden peaks in demand which are supported via a large number of computers.
"Utility computing" has usually envisioned some form of virtualization so that the amount of storage or computing power available is considerably larger than that of a single time-sharing computer. Multiple servers are used on the "back end" to make this possible. These might be a dedicated computer cluster specifically built for the purpose of being rented out, or even an under-utilized supercomputer. The technique of running a single calculation on multiple computers is known as distributed computing.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Le cloud computing , en français l'informatique en nuage (ou encore l'infonuagique au Canada), est la pratique consistant à utiliser des serveurs informatiques à distance et hébergés sur internet pour stocker, gérer et traiter des données, plutôt qu'un serveur local ou un ordinateur personnel. Les principaux services proposés en cloud computing sont le SaaS (Software as a Service), le PaaS (Platform as a Service) et le IaaS (Infrastructure as a Service) ou le MBaaS ().
Le software as a service (SaaS) ou logiciel en tant que service est un modèle d'exploitation commerciale des logiciels dans lequel ceux-ci sont installés sur des serveurs distants plutôt que sur la machine de l'utilisateur. Les clients ne paient pas de licence d'utilisation pour une version, mais utilisent librement le service en ligne ou, plus généralement, payent un abonnement.
Une grille informatique (en anglais, grid) est une infrastructure virtuelle constituée d'un ensemble de ressources informatiques potentiellement partagées, distribuées, hétérogènes, délocalisées et autonomes. Une grille est en effet une infrastructure, c'est-à-dire des équipements techniques d'ordres matériel et logiciel. Cette infrastructure est qualifiée de virtuelle car les relations entre les entités qui la composent n'existent pas sur le plan matériel mais d'un point de vue logique.
Computing is nowadays distributed over several machines, in a local IP-like network, a cloud or a P2P network. Failures are common and computations need to proceed despite partial failures of machin
The goal of this course is to transmit knowledge in sensing, computing, communicating, and actuating for programmable
field instruments and, more generally, embedded systems. The student will be able
The course introduces modern methods to acquire, clean, and analyze large quantities of financial data efficiently. The second part expands on how to apply these techniques and robust statistics to fi
Couvre les bases de l'utilisation d'un interprète interactif pour la programmation de Python.
Explore la conduction dans les points quantiques et les niveaux d'énergie discrets pour le nanocalcul.
Explore l'impact des variations de PVT, les incertitudes dans la conception des circuits intégrés, les paradigmes de conception dans le pire des cas et l'importance des simulations Monte-Carlo.
Drawing from a fieldwork conducted at COMPUTEX Taipei, one of the largest computer expo in the world, this contribution proposes to zoom-in at the level of Graphical Processing Units (GPU) manufacturers and their interactions with computer hardware hobbyis ...
2023
Smart contracts have emerged as the most promising foundations for applications of the blockchain technology. Even though smart contracts are expected to serve as the backbone of the next-generation web, they have several limitations that hinder their wide ...
EPFL2024
We present a massively parallel and scalable nodal discontinuous Galerkin finite element method (DGFEM) solver for the time-domain linearized acoustic wave equations. The solver is implemented using the libParanumal finite element framework with extensions ...