Boson vecteurEn physique des particules, un boson vecteur est un boson de spin égal à 1. Les bosons vecteurs considérés comme particules élémentaires dans le modèle standard sont les bosons de jauge, porteurs de force des interactions fondamentales : le photon de l'électromagnétisme, les bosons W et Z de l'interaction faible et les gluons de l'interaction forte. Certaines particules composites sont des bosons vecteurs, par exemple n'importe quel méson vecteur (quark et antiquark).
Méson vecteurUn méson vecteur est une particule hadronique composée de deux quarks avec des spins parallèles. Le méson vecteur est de spin 1. Le Méson J/Ψ est un méson vecteur. Alexandru Proca (1897 - 1955), ses équations ont prévu l'existence des mésons vectoriels (travail en physique théorique de 1936 à 1941). Ce type de méson n'a été observé qu'après 1960. Simulations informatiques: Animation sur les moments cinétiques orbital et de spin. Leur lien avec les lois de symétrie en physique des particules élémentaires. U
TétraquarkEn physique des particules, un tétraquark est un méson exotique composé de quatre quarks. Les tétraquarks peuvent être considérés comme des particules virtuelles, tant leur durée de vie est courte. L'existence des tétraquarks a été prédite théoriquement dans les années 1960 dans le cadre de la chromodynamique quantique. La recherche des tétraquarks (et des pentaquarks) est ensuite devenue un sujet d’étude à part entière en physique expérimentale, et plusieurs tétraquarks ont été produits au LHC, de types cc et cq.
Scalar bosonA scalar boson is a boson whose spin equals zero. A boson is a particle whose wave function is symmetric under particle exchange and therefore follows Bose–Einstein statistics. The spin–statistics theorem implies that all bosons have an integer-valued spin. Scalar bosons are the subset of bosons with zero-valued spin. The name scalar boson arises from quantum field theory, which demands that fields of spin-zero particles transform like a scalar under Lorentz transformation (i.e. are Lorentz invariant).
Particle Data GroupLe Particle Data Group est une collaboration internationale de physiciens des particules compulsant et réanalysant les résultats publiés relatifs aux propriétés des particules élémentaires et des interactions fondamentales. Il publie également des revues sur les résultats théoriques importants d'un point de vue phénoménologique comme en cosmologie. Le Particle Data Group publie biannuellement sa Review of Particle Physics (Revue de la physique des particules) en version poche, appelé le Particle Data Booklet (Livret de données sur les particules).
BELLE (expérience)L’expérience Belle est une expérience de physique des particules menée par la "Collaboration" BELLE, une équipe temporaire internationale de 400 physiciens et ingénieurs, pour la recherche des effets de la violation de symétrie CP, et conduite à l’Organisation de Recherche de l’Accélérateur des hautes Énergies (K2K), à Tsukuba, Préfecture d'Ibaraki, au Japon. Le détecteur Belle est précisément positionné au point de collision de l'accélérateur , un collisionneur à énergie asymétrique électron-antiélectron.
ÉtrangetéEn physique des particules, l’étrangeté est une propriété de certaines particules élémentaires. Elle est notée S et est un nombre entier relatif, qui peut donc être positif ou négatif. Elle intervient dans les calculs de désintégration rapide liée à l'interaction forte. En notant le nombre d'antiquarks strange et le nombre de quarks strange, alors l'étrangeté de la particule est donnée par : Le baryon possédant l'étrangeté la plus importante est l'hypéron −, pour lequel S = -3.
Potentiel de YukawaUn potentiel de Yukawa (appelé également 'potentiel de Coulomb écranté') est un potentiel de la forme Hideki Yukawa montra dans les années 1930 qu'un tel potentiel provient de l'échange d'un champ scalaire massif tel que celui d'un pion de masse . La particule médiatrice du champ possédant une masse, la force correspondante a une portée inversement proportionnelle à sa masse. Pour une masse nulle, le potentiel de Yukawa devient équivalent à un potentiel coulombien, et sa portée est considérée comme infinie.
TopnessTopness (T, also called truth), a flavour quantum number, represents the difference between the number of top quarks (t) and number of top antiquarks () that are present in a particle: By convention, top quarks have a topness of +1 and top antiquarks have a topness of −1. The term "topness" is rarely used; most physicists simply refer to "the number of top quarks" and "the number of top antiquarks". Like all flavour quantum numbers, topness is preserved under strong and electromagnetic interactions, but not under weak interaction.
Pseudovector mesonIn high energy physics, a pseudovector meson or axial vector meson is a meson with total spin 1 and even parity (+) (usually noted as J^ P = 1^+ ). Compare to a vector meson, which has a total spin 1 and odd parity (that is, J^ P = 1^− ). The known pseudovector mesons fall into two different classes, all have even spatial parity ( P = "+" ), but they differ in another kind of parity called charge parity (C) which can be either even (+) or odd (−).