A probabilistic logic network (PLN) is a conceptual, mathematical and computational approach to uncertain inference; inspired by logic programming, but using probabilities in place of crisp (true/false) truth values, and fractional uncertainty in place of crisp known/unknown values. In order to carry out effective reasoning in real-world circumstances, artificial intelligence software must robustly handle uncertainty. However, previous approaches to uncertain inference do not have the breadth of scope required to provide an integrated treatment of the disparate forms of cognitively critical uncertainty as they manifest themselves within the various forms of pragmatic inference. Going beyond prior probabilistic approaches to uncertain inference, PLN is able to encompass within uncertain logic such ideas as induction, abduction, analogy, fuzziness and speculation, and reasoning about time and causality. PLN was developed by Ben Goertzel, Matt Ikle, Izabela Lyon Freire Goertzel, and Ari Heljakka for use as a cognitive algorithm used by MindAgents within the OpenCog Core. PLN was developed originally for use within the Novamente Cognition Engine. The basic goal of a PLN is to provide reasonably accurate probabilistic inference in a way that is compatible with both term logic and predicate logic and scales up to operate in real-time on large dynamic knowledge bases. The goal underlying the theoretical development of PLN has been the creation of practical software systems carrying out complex, useful inferences based on uncertain knowledge and drawing uncertain conclusions. PLN has been designed to allow basic probabilistic inference to interact with other kinds of inference such as intensional inference, fuzzy inference, and higher-order inference using quantifiers, variables, and combinators, and be a more convenient approach than Bayesian networks (or other conventional approaches) for the purpose of interfacing basic probabilistic inference with these other sorts of inference.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.