En mathématiques, une relation binaire peut avoir, entre autres propriétés, la réflexivité ou bien l'antiréflexivité (ou irréflexivité).
Une relation R sur un ensemble X est dite :
réflexive si tout élément de X est R-relié à lui-même :ou encore, si le graphe de R contient la diagonale de X (qui est le graphe de l'égalité) ;
antiréflexive (ou irréflexive) si aucun élément de X n'est R-relié à lui-même :ou encore, si son graphe est disjoint de la diagonale de X.
La réflexivité et l'antiréflexivité sont deux propriétés incompatibles (R n'est jamais à la fois réflexive et antiréflexive, sauf si X est l'ensemble vide) mais ne sont pas la négation l'une de l'autre (R peut n'être ni réflexive, ni antiréflexive).
Les relations d'équivalence et les préordres (en particulier les relations d'ordre) sont réflexives ; les relations d'ordre strict sont antiréflexives (suivre les liens pour des exemples de tous ces types de relations).
La relation « n'est pas égal à » (≠) est antiréflexive.
Dans un ensemble de personnes, la relation « est enfant de » est antiréflexive : personne n'est son propre enfant.
Une relation sur un ensemble d'au moins deux éléments peut n'être ni réflexive, ni irréflexive : il suffit qu'au moins un élément soit en relation avec lui-même et un autre non :
sur l'ensemble des entiers naturels, la relation « est premier avec » n'est ni réflexive (en général, un entier n'est pas premier avec lui-même), ni antiréflexive (l'entier 1 est l'exception) ;
sur l'ensemble des entiers relatifs, la relation « est l'opposé de » n'est ni réflexive (en général, un nombre n'est pas son propre opposé), ni antiréflexive (l'entier 0 est l'exception).
La clôture réflexive d'une relation R sur X est la relation sur X, notée ici R, dont le graphe est l'union de celui de R et de la diagonale de X :
C'est la plus petite (au sens de l'inclusion des graphes) relation réflexive contenant R.
Par exemple, toute relation d'ordre ≤ est la clôture réflexive de l'ordre strict < associé.
Clôture transitive et clôture réflexive transitive
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
In this reading group, we will work together through recent important papers in applied topology.
Participants will take turns presenting articles, then leading a discussion of the contents.
Explore les flux potentiels 2D dans la dynamique des fluides, en se concentrant sur les relations de potentiel de fonction et de vitesse du flux et les techniques de visualisation.
Explore la régression linéaire dans une perspective d'inférence statistique, couvrant les modèles probabilistes, la vérité au sol, les étiquettes et les estimateurs de probabilité maximale.
En mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
vignette|"Signe égal" exprimant l'égalité entre deux expressions. En mathématiques, l’égalité est une relation binaire entre deux objets signifiant que ces objets sont identiques, c’est-à-dire que le remplacement de l’un par l’autre dans une expression ne change jamais la valeur de cette dernière. Une égalité est une proposition pouvant s’écrire à l’aide du signe égal « = », séparant deux expressions mathématiques de même nature (nombres, vecteurs, fonctions, ensembles...) ; la négation de cette proposition s’écrit à l’aide du symbole « ≠ ».
En mathématiques, une relation (binaire, interne) R est dite symétrique si elle vérifie : ou encore, si elle est égale à sa relation réciproque. Exemples : les relations d'équivalence sont les préordres symétriques ; sur l'ensemble des entiers, la relation « forme un produit pair avec » est symétrique, car la multiplication des entiers est commutative. La clôture symétrique d'une relation R est la relation (sur le même ensemble) dont le graphe est l'union de ceux de R et de sa réciproque.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
The Transfer Matrix formalism is ubiquitous when it comes to study wave propagation in various stratified media, applications ranging from Seismology to Quantum Mechanics. A relation between variables at two points in two different layers can be establishe ...
2022
, ,
Interface stress is a fundamental descriptor for interphase boundaries and is defined in strict relation to the interface energy. In nanomultilayers with their intrinsically high interface density, the functional properties are dictated by the interface st ...
In 1970, Furth and Yoshikawa (1970 Phys. Fluids 13 2593-6) introduced the scalings of adiabatic plasma compression. Basically, if the shape of the external plasma boundary and the aspect ratio are preserved during the compression, then the density, kinetic ...