The development of Indian logic dates back to the anviksiki of Medhatithi Gautama (c. 6th century BCE); the Sanskrit grammar rules of Pāṇini (c. 5th century BCE); the Vaisheshika school's analysis of atomism (c. 6th century BCE to 2nd century BCE); the analysis of inference by Gotama (c. 6th century BC to 2nd century CE), founder of the Nyaya school of Hindu philosophy; and the tetralemma of Nagarjuna (c. 2nd century CE).
Indian logic stands as one of the three original traditions of logic, alongside the Greek and the Chinese logic. The Indian tradition continued to develop through early to modern times, in the form of the Navya-Nyāya school of logic.
right
The Nasadiya Sukta of the Rigveda (RV 10.129) contains ontological speculation in terms of various logical divisions that were later recast formally as the four circles of catuskoti: "A", "not A", "A and 'not A'", and "not A and not not A".
Medhatithi Gautama (c. 6th century BCE) founded the anviksiki school of logic. The Mahabharata (12.173.45), around the 4th century BCE to 4th century CE, refers to the anviksiki and tarka schools of logic. (c. 5th century BCE) developed a form of logic (to which Boolean logic has some similarities) for his formulation of Sanskrit grammar. Logic is described by Chanakya (c. 350-283 BCE) in his Arthashastra as an independent field of inquiry anviksiki.
Vaisheshika
Vaisheshika, also Vaisesika, (Sanskrit: वैशेषिक) is one of the six Hindu schools of Indian philosophy. It came to be closely associated with the Hindu school of logic, Nyaya. Vaisheshika espouses a form of atomism and postulates that all objects in the physical universe are reducible to a finite number of atoms. Originally proposed by Kanāda (or Kana-bhuk, literally, atom-eater) from around the 2nd century BCE.
Catuṣkoṭi
In the 2nd century, the Buddhist philosopher Nagarjuna refined the Catuskoti form of logic. The Catuskoti is also often glossed Tetralemma (Greek) which is the name for a largely comparable, but not equatable, 'four corner argument' within the tradition of Classical logic.