EE-566: Adaptation and learningIn this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
CS-308: Introduction to quantum computationThe course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
CS-423: Distributed information systemsThis course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
EE-411: Fundamentals of inference and learningThis is an introductory course in the theory of statistics, inference, and machine learning, with an emphasis on theoretical understanding & practical exercises. The course will combine, and alternat
PHYS-101(f): General physics : mechanicsLe but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
PHYS-101(m): General physics : mechanics (IN II)Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
MATH-123(b): GeometryThe course provides an introduction to the study of curves and surfaces in Euclidean spaces. We will learn how we can apply ideas from differential and integral calculus and linear algebra in order to