Explore les systèmes d'équations non linéaires et d'interpolation polynomiale, y compris la méthode de Newton et la construction de la matrice de Vandermonde.
Couvre l'optimisation de l'erreur dans l'interpolation polynomiale, en mettant l'accent sur la minimisation de l'erreur en plaçant stratégiquement des points d'interpolation.
Couvre l'interpolation polynôme à la pièce avec les splines, en se concentrant sur l'interpolation Lagrange avec les nœuds Chebyshev et la convergence des erreurs.