Il s'agit de numériser les documents historiques, de normaliser la structure des documents et d'appliquer les réseaux neuraux à la reconnaissance du texte et à la segmentation de l'image.
Résume les cartes de Kohonen, qui couvrent l'initialisation, l'échantillonnage, l'appariement des similarités, des exemples et des applications dans l'apprentissage automatique et la classification des données.
Couvre les bases de Pytorch avec les ensembles de données MNIST et Digits, en mettant l'accent sur la formation des réseaux neuronaux pour la reconnaissance manuscrite des chiffres.
Annonce les gagnants des prix de la réunion annuelle, reconnaissant les œuvres d'affiches et de vidéos exceptionnelles et les présentations du programme Next Tech.