False positives and false negativesA false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition (such as a disease when the disease is not present), while a false negative is the opposite error, where the test result incorrectly indicates the absence of a condition when it is actually present. These are the two kinds of errors in a binary test, in contrast to the two kinds of correct result (a and a ).
PerceptronLe perceptron est un algorithme d'apprentissage supervisé de classifieurs binaires (c'est-à-dire séparant deux classes). Il a été inventé en 1957 par Frank Rosenblatt au laboratoire d'aéronautique de l'université Cornell. Il s'agit d'un neurone formel muni d'une règle d'apprentissage qui permet de déterminer automatiquement les poids synaptiques de manière à séparer un problème d'apprentissage supervisé. Si le problème est linéairement séparable, un théorème assure que la règle du perceptron permet de trouver une séparatrice entre les deux classes.
Astuce du noyauEn apprentissage automatique, l'astuce du noyau, ou kernel trick en anglais, est une méthode qui permet d'utiliser un classifieur linéaire pour résoudre un problème non linéaire. L'idée est de transformer l'espace de représentation des données d'entrées en un espace de plus grande dimension, où un classifieur linéaire peut être utilisé et obtenir de bonnes performances. La discrimination linéaire dans l'espace de grande dimension (appelé aussi espace de redescription) est équivalente à une discrimination non linéaire dans l'espace d'origine.
Arbre de décision (apprentissage)L’apprentissage par arbre de décision désigne une méthode basée sur l'utilisation d'un arbre de décision comme modèle prédictif. On l'utilise notamment en fouille de données et en apprentissage automatique. Dans ces structures d'arbre, les feuilles représentent les valeurs de la variable-cible et les embranchements correspondent à des combinaisons de variables d'entrée qui mènent à ces valeurs. En analyse de décision, un arbre de décision peut être utilisé pour représenter de manière explicite les décisions réalisées et les processus qui les amènent.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Forêt d'arbres décisionnelsvignette|Illustration du principe de construction d'une forêt aléatoire comme agrégation d'arbre aléatoires. En apprentissage automatique, les forêts d'arbres décisionnels (ou forêts aléatoires de l'anglais random forest classifier) forment une méthode d'apprentissage ensembliste. Ils ont été premièrement proposées par Ho en 1995 et ont été formellement proposées en 2001 par Leo Breiman et Adele Cutler. Cet algorithme combine les concepts de sous-espaces aléatoires et de bagging.
Valeur prédictiveEn statistique et en épidémiologie, la valeur prédictive d'un test est la probabilité qu'une condition soit présente en fonction du résultat de ce test. Le test doit être dichotomique, c’est-à-dire qu’il ne peut donner que deux résultats différents. La valeur prédictive positive est la probabilité que la condition soit présente lorsque le test est positif. La valeur prédictive négative est la probabilité que la condition ne soit pas présente lorsque le test est négatif.
Kappa de CohenEn statistique, la méthode du κ (kappa) mesure l’accord entre observateurs lors d'un codage qualitatif en catégories. L'article introduisant le κ a pour auteur Jacob Cohen – d'où sa désignation de κ de Cohen – et est paru dans le journal Educational and Psychological Measurement en 1960. Le κ est une mesure d'accord entre deux codeurs seulement. Pour une mesure de l'accord entre plus de deux codeurs, on utilise le κ de Fleiss (1981). Le calcul du κ se fait de la manière suivante : où Pr(a) est la proportion de l'accord entre codeurs et Pr(e) la probabilité d'un accord aléatoire.
Matrice de confusionEn apprentissage automatique supervisé, la matrice de confusion est une matrice qui mesure la qualité d'un système de classification. Chaque ligne correspond à une classe réelle, chaque colonne correspond à une classe estimée. La cellule ligne L, colonne C contient le nombre d'éléments de la classe réelle L qui ont été estimés comme appartenant à la classe C. Attention il y a parfois interversion des axes de la matrice en fonction des auteurs.
Sensibilité et spécificitéEn statistique, la sensibilité (ou sélectivité) d'un test mesure sa capacité à donner un résultat positif lorsqu'une hypothèse est vérifiée. Elle s'oppose à la spécificité, qui mesure la capacité d'un test à donner un résultat négatif lorsque l'hypothèse n'est pas vérifiée. Ces notions sont d'une importance majeure en épidémiologie et en , notamment au travers des courbes ROC. Cet article présente ces notions dans le cadre de l'application en épidémiologie.