Explore les arbres de décision, de l'induction à l'élagage, en mettant l'accent sur l'interprétabilité et les forces de sélection automatique des fonctionnalités, tout en abordant des défis tels que l'ajustement excessif.
Présente les projets de l'EPFL Digital Humanities Master étudiants, couvrant l'apprentissage automatique, les approches interdisciplinaires et la poésie générée par ordinateur.
Explore lutilisation des modèles de mélange gaussien pour la transition du clustering à la classification, couvrant la classification binaire, lestimation des paramètres et le classificateur Bayes optimal.
Explore les critères de performance dans l'apprentissage supervisé, en mettant l'accent sur la précision, le rappel et la spécificité dans l'évaluation des modèles.
Couvre l'utilisation de machines vectorielles de support pour la classification multi-classes et l'importance des vecteurs de support dans les limites de classification de serrage.
Explore les arbres de décision et de régression, les mesures d'impuretés, les algorithmes d'apprentissage et les implémentations, y compris les arbres d'inférence conditionnelle et la taille des arbres.
Introduit les bases de l'apprentissage supervisé, en mettant l'accent sur la régression logistique, la classification linéaire et la maximisation de la probabilité.