Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore Support Vector Machines, couvrant la marge ferme, la marge souple, la perte de charnière, la comparaison des risques et la perte de charnière quadratique.
Explore les modèles linéaires pour la classification, la régression logistique, les limites de décision, la SVM, la classification multi-classes et les applications pratiques.
Explore la régression logistique pour la classification binaire, couvrant la modélisation des probabilités, les méthodes d'optimisation et les techniques de régularisation.
Introduit les bases de la recherche de l'information, en mettant l'accent sur la fréquence et la précision des documents dans l'évaluation de la qualité de la recherche.
Explore les modèles linéaires pour la classification, y compris les modèles paramétriques, la régression et la régression logistique, ainsi que les mesures d'évaluation des modèles et les classificateurs de marge maximum.