Résumé
vignette|Graphe d'une fonction hypergéométrique dans le plan complexe. En mathématiques, le terme de fonction hypergéométrique, parfois sous le nom « fonction hypergéométrique de Gauss », désigne généralement une fonction spéciale particulière, dépendant de trois paramètres a, b, c, notée F(a, b, c ; z), parfois notée sans indice quand il n'y a pas d'ambigüité, et qui s'exprime sous la forme de la série hypergéométrique (lorsque celle-ci converge). Selon les valeurs prises par les paramètres, cette fonction correspond à de nombreuses fonctions usuelles ou spéciales, notamment des polynômes orthogonaux. La fonction hypergéométrique est en fait un cas particulier de la fonction hypergéométrique généralisée F(a,...,a ; b,...,b ; z). La fonction hypergéométrique est également solution d'une équation différentielle complexe linéaire du second ordre, dite hypergéométrique, comprenant trois . Toute équation différentielle linéaire du second ordre comprenant également trois points singuliers réguliers peut se ramener à cette équation. Le premier usage du terme « série hypergéométrique » est dû à John Wallis dans son ouvrage Arithmetica infinitorum publié en 1656. Ce terme apparaît dans la scholie à la proposition 190 de son livre, où il considère des séries du type : dans lesquelles chaque terme, au lieu d'être multiplié par une « raison » constante comme dans la série géométrique usuelle, l'est par une valeur variant avec le terme considéré, d'où le qualificatif de « hypergéométrique », le préfixe d'origine grecque hyper- signifiant « supérieur à ». Leonhard Euler a poursuivi l'étude de ce type de série, toutefois c'est à Gauss que l'on doit le premier traitement systématique de ce qui est appelée aujourd'hui la série hypergéométrique, et l'introduction de la notation F(α, β, γ, x) pour désigner la fonction correspondante, dite hypergéométrique. Au cours du , les études sur la fonction hypergéométrique se poursuivent, avec notamment les travaux de Ernst Kummer et de Bernhard Riemann, qui introduit et étudie l'équation différentielle qu'elle satisfait.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.