Concept

Classe (mathématiques)

Résumé
En mathématiques, la notion de classe généralise celle d'ensemble. Les deux termes sont parfois employés comme synonymes, mais la théorie des ensembles distingue ces deux notions. Un ensemble peut être vu comme une collection d'objets, mais aussi comme un objet mathématique, qui en particulier peut lui-même appartenir à un autre ensemble. Ce n'est pas forcément le cas d'une classe, qui est une collection d'objets que l'on peut définir, dont on peut donc parler, mais qui ne forme pas nécessairement un ensemble. Quand une classe n'est pas un ensemble, elle est appelée classe propre. Elle ne peut alors pas être élément d'une classe (ni, a fortiori, d'un ensemble). Les paradoxes de la théorie des ensembles, comme le paradoxe de Russell, montrent la nécessité d'une telle distinction. Ainsi la propriété « ne pas appartenir à soi-même » (x ∉ x) définit une classe mais pas un ensemble. L'existence d'un tel ensemble mènerait à une contradiction. À l'aube du , certains logiciens et mathématic
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement