Concept

Hill tetrahedron

In geometry, the Hill tetrahedra are a family of space-filling tetrahedra. They were discovered in 1896 by M. J. M. Hill, a professor of mathematics at the University College London, who showed that they are scissor-congruent to a cube. For every , let be three unit vectors with angle between every two of them. Define the Hill tetrahedron as follows: A special case is the tetrahedron having all sides right triangles, two with sides and two with sides . Ludwig Schläfli studied as a special case of the orthoscheme, and H. S. M. Coxeter called it the characteristic tetrahedron of the cubic spacefilling. A cube can be tiled with six copies of . Every can be dissected into three polytopes which can be reassembled into a prism. In 1951 Hugo Hadwiger found the following n-dimensional generalization of Hill tetrahedra: where vectors satisfy for all , and where . Hadwiger showed that all such simplices are scissor congruent to a hypercube.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.