Concepts associés (7)
Static spacetime
In general relativity, a spacetime is said to be static if it does not change over time and is also irrotational. It is a special case of a stationary spacetime, which is the geometry of a stationary spacetime that does not change in time but can rotate. Thus, the Kerr solution provides an example of a stationary spacetime that is not static; the non-rotating Schwarzschild solution is an example that is static. Formally, a spacetime is static if it admits a global, non-vanishing, timelike Killing vector field which is irrotational, i.
Spacetime symmetries
Spacetime symmetries are features of spacetime that can be described as exhibiting some form of symmetry. The role of symmetry in physics is important in simplifying solutions to many problems. Spacetime symmetries are used in the study of exact solutions of Einstein's field equations of general relativity. Spacetime symmetries are distinguished from internal symmetries. Physical problems are often investigated and solved by noticing features which have some form of symmetry.
Vecteur de Killing
En mathématiques, un vecteur de Killing, ou champ de Killing, est un champ vectoriel sur une variété (pseudo-)riemannienne qui conserve la métrique de cette variété et met en évidence les symétries continues de celle-ci. Intuitivement un vecteur de Killing peut être vu comme un « champ de déplacement » , c'est-à-dire associant à un point M de la variété le point M' défini par le déplacement de M le long de la courbe passant par M dont est le vecteur tangent.
Numerical relativity
Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena governed by Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.
Kerr metric
The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find. The Kerr metric is a generalization to a rotating body of the Schwarzschild metric, discovered by Karl Schwarzschild in 1915, which described the geometry of spacetime around an uncharged, spherically symmetric, and non-rotating body.
Équation d'Einstein
vignette|Équation sur un mur à Leyde. L’'équation d'Einstein ou équation de champ d'Einstein' (en anglais, Einstein field equation ou EFE), publiée par Albert Einstein, pour la première fois le , est l'équation aux dérivées partielles principale de la relativité générale. C'est une équation dynamique qui décrit comment la matière et l'énergie modifient la géométrie de l'espace-temps. Cette courbure de la géométrie autour d'une source de matière est alors interprétée comme le champ gravitationnel de cette source.
Relativité générale
La relativité générale est une théorie relativiste de la gravitation, c'est-à-dire qu'elle décrit l'influence de la présence de matière, et plus généralement d'énergie, sur le mouvement des astres en tenant compte des principes de la relativité restreinte. La relativité générale englobe et supplante la théorie de la gravitation universelle d'Isaac Newton qui en représente la limite aux petites vitesses (comparées à la vitesse de la lumière) et aux champs gravitationnels faibles.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.