Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In general relativity, a spacetime is said to be static if it does not change over time and is also irrotational. It is a special case of a stationary spacetime, which is the geometry of a stationary spacetime that does not change in time but can rotate. Thus, the Kerr solution provides an example of a stationary spacetime that is not static; the non-rotating Schwarzschild solution is an example that is static. Formally, a spacetime is static if it admits a global, non-vanishing, timelike Killing vector field which is irrotational, i.e., whose orthogonal distribution is involutive. (Note that the leaves of the associated foliation are necessarily space-like hypersurfaces.) Thus, a static spacetime is a stationary spacetime satisfying this additional integrability condition. These spacetimes form one of the simplest classes of Lorentzian manifolds. Locally, every static spacetime looks like a standard static spacetime which is a Lorentzian warped product R S with a metric of the form where R is the real line, is a (positive definite) metric and is a positive function on the Riemannian manifold S. In such a local coordinate representation the Killing field may be identified with and S, the manifold of -trajectories, may be regarded as the instantaneous 3-space of stationary observers. If is the square of the norm of the Killing vector field, , both and are independent of time (in fact ). It is from the latter fact that a static spacetime obtains its name, as the geometry of the space-like slice S does not change over time. The (exterior) Schwarzschild solution. de Sitter space (the portion of it covered by the static patch). Reissner–Nordström space. The Weyl solution, a static axisymmetric solution of the Einstein vacuum field equations discovered by Hermann Weyl. In general, "almost all" spacetimes will not be static. Some explicit examples include: Spherically symmetric spacetimes, which are irrotational, but not static. The Kerr solution, since it describes a rotating black hole, is a stationary spacetime that is not static.
Davide Galassi, Kevin Henricus Annemarie Verhaegh, Filippo Bagnato, Dario Vaccaro