In general relativity, a spacetime is said to be static if it does not change over time and is also irrotational. It is a special case of a stationary spacetime, which is the geometry of a stationary spacetime that does not change in time but can rotate. Thus, the Kerr solution provides an example of a stationary spacetime that is not static; the non-rotating Schwarzschild solution is an example that is static.
Formally, a spacetime is static if it admits a global, non-vanishing, timelike Killing vector field which is irrotational, i.e., whose orthogonal distribution is involutive. (Note that the leaves of the associated foliation are necessarily space-like hypersurfaces.) Thus, a static spacetime is a stationary spacetime satisfying this additional integrability condition. These spacetimes form one of the simplest classes of Lorentzian manifolds.
Locally, every static spacetime looks like a standard static spacetime which is a Lorentzian warped product R S with a metric of the form
where R is the real line, is a (positive definite) metric and is a positive function on the Riemannian manifold S.
In such a local coordinate representation the Killing field may be identified with and S, the manifold of -trajectories, may be regarded as the instantaneous 3-space of stationary observers. If is the square of the norm of the Killing vector field, , both and are independent of time (in fact ). It is from the latter fact that a static spacetime obtains its name, as the geometry of the space-like slice S does not change over time.
The (exterior) Schwarzschild solution.
de Sitter space (the portion of it covered by the static patch).
Reissner–Nordström space.
The Weyl solution, a static axisymmetric solution of the Einstein vacuum field equations discovered by Hermann Weyl.
In general, "almost all" spacetimes will not be static. Some explicit examples include:
Spherically symmetric spacetimes, which are irrotational, but not static.
The Kerr solution, since it describes a rotating black hole, is a stationary spacetime that is not static.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, un vecteur de Killing, ou champ de Killing, est un champ vectoriel sur une variété (pseudo-)riemannienne qui conserve la métrique de cette variété et met en évidence les symétries continues de celle-ci. Intuitivement un vecteur de Killing peut être vu comme un « champ de déplacement » , c'est-à-dire associant à un point M de la variété le point M' défini par le déplacement de M le long de la courbe passant par M dont est le vecteur tangent.
In general relativity, specifically in the Einstein field equations, a spacetime is said to be stationary if it admits a Killing vector that is asymptotically timelike. In a stationary spacetime, the metric tensor components, , may be chosen so that they are all independent of the time coordinate. The line element of a stationary spacetime has the form where is the time coordinate, are the three spatial coordinates and is the metric tensor of 3-dimensional space. In this coordinate system the Killing vector field has the components .
La singularité de Schwarzschild est le comportement divergent de la métrique de Schwarzschild quand . Il ne faut pas la confondre avec la singularité gravitationnelle d'un trou noir. Cette singularité n'est qu'apparente : elle se manifeste dans l'expression classique de cette métrique, mais pas dans d'autres. On considère donc que c'est une singularité mathématique pour la métrique classique de Schwarzschild, mais que ce n'est pas une singularité physique.
This course will serve as a basic introduction to the mathematical theory of general relativity. We will cover topics including the formalism of Lorentzian geometry, the formulation of the initial val
Explore la dérivation et la conservation du tenseur d'énergie pour les particules ponctuelles, y compris l'impact des champs électromagnétiques et de la métrique de Schwarzschild.
Explore les diagrammes de Penrose pour visualiser l'espacement des trous noirs, soulignant la nature éternelle des trous noirs formés par l'effondrement gravitationnel.
The official Spherical Tokamak for Energy Production mission aims to demonstrate the ability to generate net electricity from fusion with the STEP Prototype Power plant. One of the key technological and engineering challenges in fusion power plants is mana ...
Price's Law states that linear perturbations of a Schwarzschild black hole fall off as t−2ℓ−3 for t→∞ provided the initial data decay sufficiently fast at spatial infinity. Moreover, if the perturbations are initially static (i.e., their ...
2011
The MHD model enables derivation and analysis of the rich structure of geodesic acoustic modes (GAMs) and zonal modes in axisymmetric magnetic confined plasmas. The modes are identifiable from a single dispersion relation as two branches of slow magnetoson ...