vignette|droite|upright=0.65|Sinuosité pour deux demi-cercles inversés : longueur du trait bleu (soit la longueur du cercle) divisée par la longueur du trait tireté (soit le 2 fois le diamètre du cercle) La sinuosité, ou coefficient de sinuosité, ou indice de sinuosité, d’une courbe continûment dérivable comportant au moins un point d'inflexion est le rapport entre la longueur curviligne (selon le parcours) et la distance (ligne droite) entre les points extrêmes du tracé. Cette grandeur sans dimension est obtenue par le rapport suivant : La valeur varie entre 1 (ligne droite) et l'infini (cas d'une courbe fermée). La sinuosité de 2 demi-cercles inversés continus situés dans le même plan est de soit environ : elle est donc indépendante du rayon du cercle. La courbe doit être continue (pas de saut) entre les deux extrémités. La valeur de la sinuosité est vraiment significative lorsque la ligne est toujours dérivable (pas de point anguleux intermédiaire). La distance entre les deux extrémités peut aussi s’évaluer par un cumul de segments selon une ligne brisée passant par les points d’inflexions successifs (sinuosité d'ordre 2). Le calcul de la sinuosité est valable dans un espace à 3 dimensions (ex : pour l'axe central de l'intestin grêle) bien qu'il ne soit souvent effectué que dans un plan (avec alors une possible projection orthogonale de la courbe dans le plan retenu ; sinuosité "classique" sur plan horizontal, sinuosité de profil en long sur plan vertical). On peut aussi distinguer le cas où le flux s'écoulant sur la ligne ne pourrait physiquement pas parcourir la distance entre les extrémités : dans certaines études hydrauliques, ceci conduit à attribuer une "sinuosité" de 1 pour un torrent s'écoulant sur un substratum rocheux le long d'une projection horizontale rectiligne même si la pente varie (= si la sinuosité du profil en long est supérieure à 1). La qualification d'une sinuosité (ex : forte / faible) dépend souvent de l'échelle cartographique du tracé et de la vitesse du flux / de l'objet qui s'y écoule (rivière, avalanche, voiture, cycliste, skieur, bobsleigh, TGV, etc.