Cet article résume l'histoire de la théorie quantique des champs.
La théorie quantique des champs est l'application des concepts de la physique quantique aux champs. Issue de la mécanique quantique relativiste, dont l'interprétation comme théorie décrivant une seule particule s'était avérée incohérente, la théorie quantique des champs fournit un cadre conceptuel largement utilisé en physique des particules, en physique de la matière condensée, et en physique statistique.
En 1925 à Göttingen, peu de temps après la naissance de la mécanique des matrices, Jordan essaie de quantifier le champ électromagnétique créé par une particule chargée en suivant les nouvelles règles introduites par Heisenberg pour les particules. Cette première tentative échoue, mais Jordan persévère et, un an plus tard, essaie cette fois de quantifier le champ électromagnétique libre (i.e. en l'absence de charges). La réception de ce travail par ses pairs est plutôt hostile, et on considère usuellement que la théorie quantique des champs naît véritablement en 1927 lorsque paraît l'article princeps du britannique Dirac intitulé : « La théorie quantique de l'émission et de l'absorption du rayonnement ». Dans ce papier, Dirac quantifie complètement le système {charges + champs} en utilisant le formalisme hamiltonien. La méthode utilisée par Dirac sera baptisée seconde quantification.
La théorie de Dirac fut reçue et discutée élogieusement, notamment par Bohr, au cours du célèbre congrès Solvay du mois d'octobre 1927. Cependant, elle présentait manifestement un défaut majeur : son formalisme, basé sur le hamiltonien, faisait jouer au temps un rôle particulier, ce qui n'était pas compatible avec l'invariance de Lorentz réclamée par la théorie de la relativité restreinte d'Einstein. Heisenberg, Jordan, Pauli et Klein décidèrent alors de créer leur propre version de l'électrodynamique quantique relativiste.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The numerical simulation of quantum systems plays a central role in modern physics. This course gives an introduction to key simulation approaches,
through lectures and practical programming exercises
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
En théorie quantique des champs (ou QFT), en mécanique statistique des champs, dans la théorie des structures géométriques autosimilaires, une renormalisation est une manière, variable dans sa nature, de prendre la limite du continu quand certaines constructions statistiques et quantiques deviennent indéfinies. La renormalisation détermine la façon de relier les paramètres de la théorie quand ces paramètres à grande échelle diffèrent de leur valeur à petite échelle.
La théorie quantique des champs fournit une procédure systématique permettant de calculer de façon perturbative toutes les observables d'une théorie (c'est-à-dire les fonctions de corrélation entre les différents opérateurs quantifiés de la théorie) étant donné son Lagrangien microscopique. Les degrés de liberté de la théorie étant classés selon leur masse, il apparaît que pour des énergies d'observation faibles, la contribution dominante aux observables provient des excitations les plus légères (on dit que seuls ces degrés de liberté sont visibles) et que la contribution des excitations plus massives joue le rôle de correction au résultat fourni par les excitations visibles.
Couvre des sujets avancés dans la théorie quantique des champs, y compris les représentations du groupe Poincaré et la construction d'irreps unitaires.
Quantum Field Theories are a central object of interest of modern physics, describing fundamental interactions of matter. However, current methods give limited insight into strongly coupling theories. S-matrix bootstrap program, described in this thesis, a ...
We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikov c-theorem, and derive further independ ...
In the standard framework of self-consistent many-body perturbation theory, the skeleton series for the self-energy is truncated at a finite order N and plugged into the Dyson equation, which is then solved for the propagator G(N). We consider two examples ...