Explore les modèles thématiques, les modèles de mélange gaussien, la répartition des dirichlets latents et l'inférence variationnelle dans la compréhension des structures latentes à l'intérieur des données.
Couvre des modèles thématiques, en se concentrant sur l'allocation de Dirichlet latente, le regroupement, les MGM, la distribution de Dirichlet, l'apprentissage LDA et les applications en humanités numériques.
Explore la recherche de documents, la classification, l'analyse des sentiments, les matrices TF-IDF, les méthodes de voisinage les plus proches, la factorisation matricielle, la régularisation, LDA, les vecteurs de mots contextualisés et BERT.
Couvre les progrès récents de l'apprentissage structurel pour les modèles graphiques, y compris les modèles gaussiens, les modèles mixtes et les événements extrêmes.
Plongez dans le traitement de grandes collections de textes numériques, en explorant les régularités cachées, la réutilisation du texte et l'analyse TF-IDF.