Concept

Constructivisme (mathématiques)

Concepts associés (36)
Μ operator
In computability theory, the μ-operator, minimization operator, or unbounded search operator searches for the least natural number with a given property. Adding the μ-operator to the primitive recursive functions makes it possible to define all computable functions. Suppose that R(y, x1, ..., xk) is a fixed (k+1)-ary relation on the natural numbers. The μ-operator "μy", in either the unbounded or bounded form, is a "number theoretic function" defined from the natural numbers to the natural numbers.
Ultrafinitisme
En philosophie des mathématiques, l'ultrafinitisme, (aussi connu sous le nom d'ultraintuitionnisme, finitisme strict, ou encore de finitisme fort) est une forme extrême de finitisme. Une caractéristique de l'ultrafinitisme est son objection à la totalité de certaines fonctions numériques jusqu'à y compris l'exponentiation. L'ultrafinitisme nie l'existence de l'ensemble infini des entiers naturels, car celui-ci ne pourra jamais être complété.
Limited principle of omniscience
In constructive mathematics, the limited principle of omniscience (LPO) and the lesser limited principle of omniscience (LLPO) are axioms that are nonconstructive but are weaker than the full law of the excluded middle. They are used to gauge the amount of nonconstructivity required for an argument, as in constructive reverse mathematics. These principles are also related to weak counterexamples in the sense of Brouwer. The limited principle of omniscience states : LPO: For any sequence , , ...
Bar induction
Bar induction is a reasoning principle used in intuitionistic mathematics, introduced by L. E. J. Brouwer. Bar induction's main use is the intuitionistic derivation of the fan theorem, a key result used in the derivation of the uniform continuity theorem. It is also useful in giving constructive alternatives to other classical results. The goal of the principle is to prove properties for all infinite sequences of natural numbers (called choice sequences in intuitionistic terminology), by inductively reducing them to properties of finite lists.
Subcountability
In constructive mathematics, a collection is subcountable if there exists a partial surjection from the natural numbers onto it. This may be expressed as where denotes that is a surjective function from a onto . The surjection is a member of and here the subclass of is required to be a set. In other words, all elements of a subcountable collection are functionally in the image of an indexing set of counting numbers and thus the set can be understood as being dominated by the countable set .
Calcul des constructions
Le calcul des constructions (CoC de l'anglais calculus of constructions) est un lambda-calcul typé d'ordre supérieur dans lequel les types sont des valeurs de première classe. Il est par conséquent possible, dans le CoC, de définir des fonctions qui vont des entiers vers les entiers, mais aussi des entiers vers les types ou des types vers les types. Le CoC est fortement normalisant, bien que, d'après le théorème d'incomplétude de Gödel, il soit impossible de démontrer cette propriété dans le CoC lui-même, puisqu'elle implique sa cohérence.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.