En mathématiques, le théorème de Krull-Schmidt énonce qu'un groupe soumis à certaines conditions de finitude sur des chaînes de sous-groupes, peut être écrit de manière unique comme un produit direct fini de sous-groupes indécomposables. On dit qu'un groupe G satisfait la condition de chaîne sur les sous-groupes si toute suite de sous-groupes de G : est ultimement constant, c'est-à-dire qu'il existe N tel que G N = G N +1 = G N +2 = . . . . On dit que G satisfait la condition de chaîne sur les sous-groupes distingués si toute suite de sous-groupes distingués de G devient finalement constante. De même, on peut définir la condition de chaîne décroissante sur les sous-groupes (distingués), en s'intéressant à toutes les suites décroissantes des sous-groupes (distingués) : Clairement, tous les groupes finis satisfont aux conditions ascendantes et descendantes de chaîne sur les sous-groupes. Le groupe cyclique infini satisfait la condition ascendante mais pas descendante, puisque (2) > (2) 2 > (2) 3 > ... est une suite décroissante infinie de sous-groupes. D'autre part, la partie de -torsion de (le groupe de Prüfer) satisfait la condition descendante mais pas ascendante. On dit qu'un groupe G est indécomposable s'il ne peut s'écrire comme un produit direct de sous-groupes non triviaux G = H × K. Si est un groupe qui satisfait soit la condition ascendante soit descendante de chaîne sur des sous-groupes distingués, alors il y a exactement une façon d'écrire comme produit direct d'un nombre fini de sous-groupes indécomposables de , à l'ordre près. Prouver l'existence est relativement simple: soit S l'ensemble de tous les sous-groupes distingués qui ne peuvent pas être écrits comme un produit de sous-groupes indécomposables. Or tout sous-groupe indécomposable est (trivialement) le produit direct à un terme de lui-même, donc décomposable. Si Krull-Schmidt est faux, alors S contient G ; on peut donc construire itérativement une série décroissante de facteurs ; cela contredit la condition de chaîne descendante.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.